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▸ Common ASR does not model punctuations

▸ ASR post-processing procedure for punctuations

▸ An extra post-processing model is needed, while costly for on-device scenarios

▸ Mismatch between text sequence(training) and ASR hypothesis(inference)

Background
Punctuation Prediction for On-device Scenarios
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Background
Related work – Streaming Speech Recognition

[1] Moritz N, Hori T, Le Roux J. Triggered attention for end-to-end speech recognition[C]//ICASSP 2019-2019 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019: 5666-5670.

• Spikes are detected by the CTC 

trigger network

• Once the spike is detected, the 

decoder take a step. 

• In practice, we count the spikes and 

decode  chunk by chunk.
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Background
Related work – Punctuation Prediction

• Input is text only

• For each token, the model predict 

which the punctuation 

follows(including blank)

• Can be initialized by MLM or other 

pretrained models
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▸ Text-only input makes model’s output have no difference in different speech. E.g.

▸ “Onetwothreefourfive.”

▸ “One,two,three,four,five.”

▸ ”One,twothree,fourfive.”

▸ An independent model needs many parameters to model the task

Background
Drawbacks of Language Model based Punctuation Prediction
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Proposed Method

• Three methods are explored to model punctuations with ASR for on-devices scenarios

• The joint modeling of ASR and punctuation is proposed in this work
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Proposed Method
Different methods for the joint model

• Feature from different layers of the decoder

• Auto-regressive decoding for joint punctuation and ASR
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Proposed Method
Teacher-forcing Decoding Scheme

Example

Ref: Hey, John, how are you?

Hyp: Hey, John, how’re you

• Punctuation errors and ASR errors are tangled with each other

• We need to separate them

• The teacher-forcing decoding scheme is proposed to evaluate the 

punctuation performance as follows
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▸ Training set: 3000 hrs of in-house Chinese spoken Dataset, split into 90% - 10% for development 
set

▸ Test set: 10 hrs Indoor, 5 hrs Meeting, 16hrs Mobile

▸ Punctuation: Comma, Period, Question Mark, Enumeration Comma, and Blank.

Experiment
Dataset
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Experiment
Results

▸ TER: Whole sequence token error rate

▸ CER: The raw text sequence character error rate

▸ F1: Averaged punctuation F1-score
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Experiment
Results

▸ The direct modeling(ASR with Punc) has good punctuation result while worse in ASR.

▸ Joint Model-x3 with ∝ = 2.0 achieves the best position, which is better than first two methods.
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Experiment
Results

▸ Joint Model achieves better performance on both ASR and punctuation while needs limited extra 
parameter.
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Thanks !


