Radar Target Detection Aided by Reconfigurable Intelligent Surfaces

E. $Grossi^1$ M. $Lops^2$ L. $Venturino^1$ S. $Buzzi^1$

¹DIEI, Università degli Studi di Cassino e del Lazio Meridionale, Italy ²DIETI, Università di Napoli "Federico II," Italy

IEEE ICASSP 2022, Singapore

Context

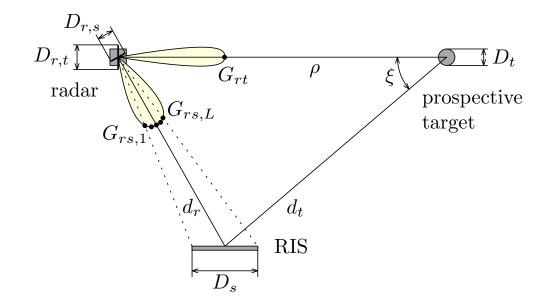
- Reconfigurable Intelligent Surfaces (RIS's) are planar structures of reflecting units capable of changing the phases of incoming signals
- No power amplification is undertaken in RIS's
- The overall power consumption of an *L*-element RIS is in the order of $LP_n(b)$, where $P_n(b)$ is the power consumption of a single unit with a *b*-bits phase resolution. Typical values are:

b	3	4	5	6
$P_n(b) (\mathrm{mW})$	1.5	4.5	6	7.8

• Thus RIS's have become popular as energy-efficient alternatives to classical Amplify-and-Forward in terrestrial wireless networks.

 $2 \, / \, 12$

Problem Formulation


Given

- A radar system, possibly capable of forming multiple transmit/receive beams
- An *L*-element RIS placed at distance d_r from the radar transceiver
- A prospective target at distance ρ from the radar and at distance d_t from the RIS

Determine

If and under what conditions is the RIS helpful in target detection.

Geometry and Parameters

- D_{rt} , D_{rs} are the sizes of the radar antennas pointing toward the target and the RIS, respectively, while D_s is the size of the RIS • G_{rt} is the gain of the radar beam towards the target, and $G_{rs,\ell}$
- the corresponding gain towards the ℓ -th element of the RIS

• The radar is narrowband, i.e. its bandwidth W satisfies $\max\left\{D_{rt}, D_{rs}, D_s\right\} \ll \frac{c}{W};$

- All of the antennas are *directive*: $\min \{D_{rt}, D_{rs}, D_s\} \gg \lambda;$
- The wavefield is a plain wave in the paths between radar and target, target and RIS, radar and each element of the RIS, i.e.:

Assumptions

 $\rho \ge 2 \max\{D_{rt}^2, D_{rs}^2\}/\lambda$ $\min\{d_{t,\ell}^2\}_{\ell=1}^L \ge 2\max\{D_t^2, D_s^2\}/\lambda$ $\min\{d_{r,\ell}^2\}_{\ell=1}^L \ge 2\max\{D_{rs}^2\}/\lambda$

Remark: the whole RIS and the radar may not be in the far field of each other!

A case study

5 / 12

4 / 12

The radar has	Let	
One single transmit beam pointing at the target Two receive beams pointing at the target and the RIS		
We have a direct path (radar \rightarrow target \rightarrow radar) and an indirect path (radar \rightarrow target \rightarrow RIS \rightarrow radar) We examine two situations:		
• Radar and RIS view the target with the same angle of view (co-located radar and RIS)		
• Radar and RIS are widely spaced (different angles of view)		
Remark: A different architecture would be possible, i.e. the radar splits its power between two transmit beams and has one receive beam. We do not consider this situation here.		

6 / 12

Signal model

Let x_1 be the observable generated by the direct path, and x_2 be the one generated by the indirect path. We have:

$$\begin{cases} x_1 = \alpha \sqrt{\sigma} e^{j\beta} + w_1 \\ x_2 = \sum_{\ell=1}^L \alpha_{sr,\ell} \sqrt{\sigma_s} e^{j(\psi_{t,\ell} + \phi_\ell + \psi_{r,\ell})} + w_2 \end{cases}$$

• σ and σ_s are the unknown target RCS's ($\sigma = \sigma_s$ for co-located case)

• $\{\psi_{r,\ell}\}_{\ell=1}^L$ are the phases of the radar-RIS channel

• $\{\phi_\ell\}_{\ell=1}^L$ are the adjustable RIS phases

• $\{\psi_{t,\ell}\}_{\ell=1}^L$ are the unknown phases of the target-RIS channel

• α is the target attenuation (target \rightarrow radar hop)

• $\alpha_{sr,\ell}$ is the attenuation between the ℓ -th RIS unit and the radar receive antenna

$7 \, / \, 12$

RIS phases choice and receiver design

For known RIS-radar channel phases, the RIS phases can be designed so as to phase-align all of the signal terms. In fact: • If they are closely-spaced, then

$$\sigma = \sigma_s$$
 and $\psi_{t,\ell} = \underbrace{\beta}_{\text{unknown}} + \underbrace{\psi'_{t,\ell}}_{\text{known}}$

• If they are widely-spaced, then

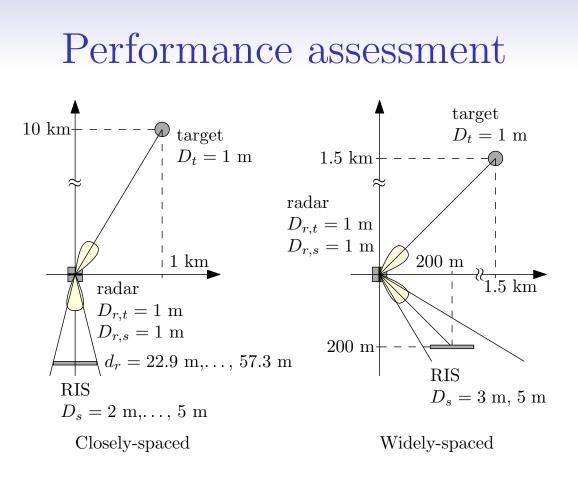
$$\sigma \neq \sigma_s$$
 and $\psi_{t,\ell} = \underbrace{\beta_s}_{\text{unknown}} + \underbrace{\psi_{t,\ell}''}_{\text{known}}$

• For the closely-spaced case, the receiver is a coherent energy integrator

• For the widely-spaced case, it incoherently integrates the energy along the two available channels

8 / 12

SNR Gain of the Radar+RIS system

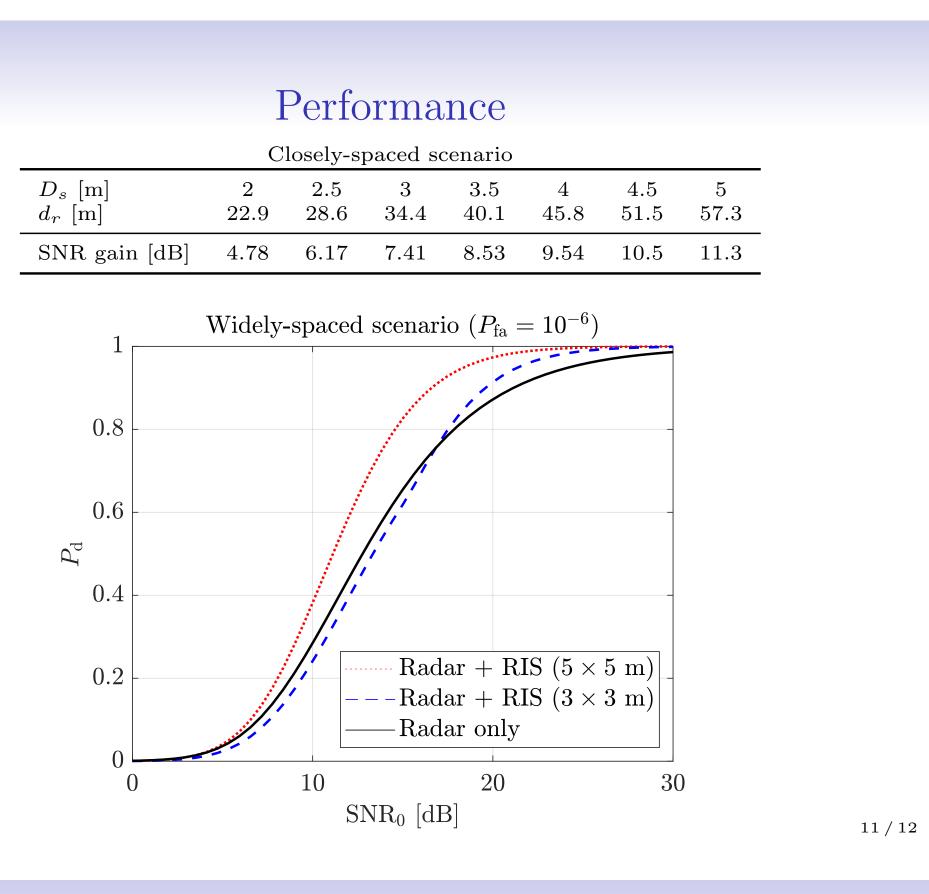

et SNR_0 be the SNR in absence of RIS, we have: • Closely-spaced RIS and Radar

$$SNR = SNR_0 \left(1 + K_{sr}\right) \quad K_{sr} = \frac{\alpha_{sr}^2}{\alpha^2} = \frac{\sum_{\ell=1}^L \alpha_{sr,\ell}^2}{\alpha^2}$$

• Widely-spaced RIS and radar. Here we have two independent paths and two different SNR's:

$$\begin{cases} \text{SNR}_1 = \text{SNR}_0\\ \text{SNR}_2 = \text{SNR}_0 K_{sr} \frac{\mathbb{E}[\sigma_s]}{\mathbb{E}[\sigma]} \end{cases}$$

reliminary conclusion: This scheme *always* results in an SNR gain. emark: The relevance of this gain depends on the system geometry id will be investigated later on.


• Carrier at 3 GHz

• Radar Antennas: uniform square arrays of area 1 m^2 and $\frac{\lambda}{2}$ spacing

• Two transmit bandwidths: 1 and 10 MHz

• RIS sizes range from 2 to 5 meters, and d_r is such that the area covered by the radar 3-dB bandwidth equals the RIS surface

10 / 12

Comments and Conclusions

• In a closely-spaced scenario, the system Radar+RIS is seen as a unique *large* array, which explains the substantial SNR gains

• In a widely-spaced scenario, the RIS is just a source of angular diversity, whereby a visible advantage is observed only for high detection probabilities

• The results and the conclusions established here carry over (more or less) to the case of a power split between two transmit antennas (one pointed at the target, the other at the RIS) with a single receive beam pointed at the target