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Abstract
Automatic Speech Recognition (ASR) systems are known to
exhibit difficulties when transcribing children’s speech. This
can mainly be attributed to the absence of large children’s
speech corpora to train robust ASR models and the resulting
domain mismatch when decoding children’s speech with sys-
tems trained on adult data. In this paper, we propose multi-
ple enhancements to alleviate these issues. First, we propose a
data augmentation technique based on the source-filter model
of speech to close the domain gap between adult and children’s
speech. This enables us to leverage the data availability of adult
speech corpora by making these samples perceptually similar to
children’s speech. Second, using this augmentation strategy, we
apply transfer learning on a Transformer model pre-trained on
adult data. This model follows the recently introduced XLS-R
architecture, a wav2vec 2.0 model pre-trained on several cross-
lingual adult speech corpora to learn general and robust acoustic
frame-level representations. Adopting this model for the ASR
task using adult data augmented with the proposed source-filter
warping strategy and a limited amount of in-domain children’s
speech significantly outperforms previous state-of-the-art re-
sults on the PF-STAR British English Children’s Speech corpus
with a 4.86% WER on the official test set.
Index Terms: speech recognition, children’s speech, data aug-
mentation, Transformers

1. Introduction
Automatic speech recognition (ASR) performance on adult
speech data has recently improved noticeably due to the avail-
ability of large transcribed speech corpora [1, 2] and the devel-
opment of end-to-end attention-based acoustic models to lever-
age the available data [3, 4]. However, in low-resource settings,
such as children’s speech recognition, the performance bene-
fits of these end-to-end models are limited due to the lack of
substantial in-domain transcribed data with more traditional ap-
proaches such as DNN-HMM ASR models still being competi-
tive [5, 6].

The recent advances of transfer learning in the field of
ASR shows promising results on similar low-resource speech
recognition tasks [7, 8, 9]. Fine-tuned acoustic frame-level
representations from self-supervised models pre-trained with
a masking objective on unlabelled adult data can be success-
fully used for downstream speech recognition applications with
a small amount of data [10]. Encouraging results using pre-
trained end-to-end models have recently been established for
children’s speech recognition with limited amounts of tran-
scribed in-domain data [11, 12]. However, these models are
pre-trained using large amounts of unlabelled in-domain chil-
dren’s speech, which imposes an important limitation on the us-
age of this approach. To alleviate this assumption, we attempt
to leverage unlabelled adult speech in combination with a data

augmentation strategy to tackle the acoustic mismatch between
adult and children’s speech.

Vocal tract length pertubation (VTLP) [13] is the most es-
tablished method to close the domain gap between adult and
child speakers [14]. VTLP applies a linear warping along the
frequency axis of the adult speech spectrum to make it percep-
tually more similar to children’s speech. Other work has gained
improvements by generating additional input samples by trans-
forming adult speech into children’s speech using a voice con-
version model based on cycle GANs [15, 16]. However, voice
conversion models require supplementary child data and intro-
duces an extra training stage which needs to be optimized for
the downstream task.

In this work, we propose an augmentation technique based
on the source-filter model of speech [17]. We argue that the
characteristics of the source and filter component of the speech
spectrum behave independently in relation to the adult and chil-
dren’s speech domain mismatch. Subsequently, we introduce
a data augmentation strategy which applies a warping function
with separate configurations for the source and filter component
of the input signal. This enables us to use available adult speech
to train more robust acoustic models for transcribing children’s
speech. We develop an end-to-end acoustic model based on the
recently introduced XLS-R model [10]. This architecture based
on wav2vec 2.0 [8] is pre-trained self-supervised on large cross-
lingual corpora of adult speech with the task of predicting quan-
tized units of masked latent speech representations. Using the
proposed source-filter warping strategy enables us to leverage
available transcribed adult data and fine-tune the model robustly
on the children’s speech recognition task.

2. Data augmentation

The disparities between adult and children’s acoustic charac-
teristics poses some inherit challenges to speech recognition
systems for children’s speech. Mainly, formants in children’s
speech are located at higher frequencies and are prone to higher
inter-speaker variability due to the shorter and developing vo-
cal tract of children when compared to adults [18]. A shorter
vocal tract and subsequent higher fundamental frequency (f0)
also results in undersampling of the spectral envelope due to the
widely spaced harmonics [19, 20]. This makes speech recog-
nition methods relying on spectral representations of the input
signal less robust when handling children’s speech, especially
when trained on adult data, which does not exhibit this prob-
lem due to a lower average f0. Other distinctions include age-
dependent cognitive abilities leading to more frequent disfluen-
cies and mispronunciations [21]. Several techniques have been
proposed to make the spectral representation of adult data more
similar to children’s speech.



2.1. Vocal tract length pertubation

The most used data augmentation strategy to mimic the spec-
tral characteristics of children is applying VTLP [13] on adult
data [14]. This method applies a linear warping function with a
random factor η along a range of frequencies covering the sig-
nificant formants in the spectrum of the signal. In the case of
children’s speech recognition, η is usually constricted to η > 1
since the average fundamental frequency and formant locations
of children’s speech is higher in comparison to male and female
adult speech.

2.2. Proposed source-filter warping

In the source-filter model of speech production, speech y(t) is
regarded as the convolution of an input signal s(t) and an im-
pulse response v(t), often referred to as the source and filter
component, respectively [17]. The resulting equation for speech
production in the source-filter model is y(t) = s(t) ∗ v(t).
Transferring to the spectral domain, the resulting equation be-
comes:

Y (ω) = S(ω)V (ω) (1)

with the convolution turned into multiplication. S(ω) and V (ω)
indicate the source and vocal-tract filter spectrum, respectively.
VTLP applies a warping function along the frequency dimen-
sion contained in Y (ω), resulting in the usage of the same warp-
ing coefficient for both the source and filter component. How-
ever, we argue that the optimal warping factor to transform the
adult spectrum to a child-like spectral representation is distinct
for the source and filter element. Therefore, we propose source-
filter warping (SFW), a data augmentation strategy which ap-
plies a warping function with separate warping coefficients α
and β for the source and filter component, respectively.

2.2.1. Spectral envelope estimation

We use an iterative smoothing algorithm along the frequency
dimension of the power spectrum to estimate the spectral en-
velope. This reduces the computational complexity as opposed
to methods such as cepstral windowing [22] and linear predic-
tive coding (LPC) [23]. Given that Yi represents the power
spectrum at frequency location i after applying the short-time
Fourier transform (STFT) on the input waveform, the corre-
sponding spectral envelope Vi is estimated iteratively with:

Vi = max(Yi, Vi−1 + γ(Yi − Vi−1)) (2)

with V0 = Y0 and γ being the smoothing factor determin-
ing the proclivity of the algorithm to smooth out minor spectral
peaks. We apply the algorithm twice: a forward pass starting
from the highest frequency bin located at ih and a reverse back-
ward pass starting from the lowest frequency bin. Having es-
timated the spectral envelope, we can now extract the source
component by following S(ω) = Y (ω)

V (ω)
.

2.2.2. Warping function

VTLP is typically applied by remapping the center frequencies
of the filterbanks in the Mel-spectrogram representation [13].
However, we do not want to lose spectral resolution inherit due
to the subsampling induced by applying Mel-filterbanks on the
spectrum. Subsequently, we employ the warping function di-
rectly on the extracted source and filter spectrum of the signal.
The warped value F ′

i of the source or filter component at fre-

Figure 1: Figures of an adult spectrogram (top) augmented by
SFW using a high source warping coefficient α (middle) result-
ing in widely spaced harmonics and a high filter warping coef-
ficient β (bottom) which mainly alters the formant locations.
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with λ indicating the warping coefficient. With λ < 1 and
⌊ 1
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λ
i⌋ on the right-hand side of Equation 3, the

average power of the 2% upper frequency bins is used for the
resulting F ′

i . After applying the warping functions, we can re-
construct the augmented spectrogram by multiplying the source
and filter component. Figure 1 illustrates the effect of source-
filter warping with varying values for the source warping coef-
ficient α and filter warping coefficient β.

3. Acoustic modelling
Traditional ASR systems are based on the DNN-HMM model
[24, 25]. The neural network serves as the acoustic model and
estimates the posterior probabilities of the acoustic units in the
framed speech signal and is usually implemented as a CNN or
TDNN. DNN-HMM models are still popular in low-resource
ASR conditions such as children’s speech recognition [5, 11].

3.1. End-to-end ASR systems

Recently, attention-based end-to-end speech recognition sys-
tems with an encoder-decoder architecture have gained state-
of-the-art results on adult ASR benchmarks [3, 4]. However,
training randomly initialized end-to-end models is known to re-
quire a significant amount of training data to model the latent
acoustic representations robustly [26]. This poses an important
limitation on the direct usage of these models in children’s ASR
applications.

In the context of low-resource speech recognition, promis-
ing results are recently gained by applying transfer learning
techniques to adapt a model trained on large speech corpora to
perform robust speech recognition on resource constrained out-
of-domain data [7, 8]. We apply transfer learning on a Trans-
former model pre-trained on adult speech data with a masking
objective to build a robust children’s speech ASR system.



Figure 2: Diagram depicting the network architecture for our
ASR system. We denote k, s and g for kernel size, stride and
group size in the convolutional layers, respectively. T refers to
the temporal dimension of the input waveform and C denotes
the output dimension matching the vocabulary size.

3.2. Proposed Transformer ASR system

The architecture of our ASR system is based on the recently
proposed XLS-R model [10], a Transformer architecture based
on wav2vec 2.0 [8]. The model consists of two components:
the encoder network and the context network. The encoder net-
work consists of stacked blocks of temporal convolutions fol-
lowed by layer normalization (LN) [27] and the GELU [28]
activation function, converting the raw input waveform into a
sequence of latent speech representations Z. Positional embed-
dings are added to the speech representations for the context
network to be able to model long-range dependencies of the in-
put signal. The positional embeddings are learned by a grouped
convolution, providing the following layers relative positional
information [29]. The speech representations are then used as
input to the context network. The context network consists of
stacked Transformer blocks, modelling contextualized acoustic
representations Q.

Following [10], the model is pre-trained on cross-lingual
unlabelled adult speech corpora in a self-supervised manner us-
ing a contrastive loss function in which the model needs to pre-
dict quantized audio representations from masked output latent
representations of the encoder network. The learned context

representations should be able to capture robust acoustic and
linguistic characteristics of the input utterance. We choose to
pre-train on cross-lingual adult data to make the context repre-
sentations and subsequent ASR system robust against children’s
speech in a variety of languages without the need to pre-train
and optimize separate models in future work.

After pre-training, a linear layer is added to the context net-
work which projects the context representations Q to the vocab-
ulary of the ASR task. We fine-tune the model using a combina-
tion of augmented adult speech with the proposed SFW strategy
described in Section 2.2 and in-domain children’s speech. By
fine-tuning the pre-trained adult model on children’s speech and
augmented adult data, the network should be able to make the
learned adult acoustic representations of the context network ro-
bust against the corresponding children’s speech. The optimiza-
tion of the model on the ASR task is done using the Connec-
tionist Temporal Classification (CTC) [30] objective function.
During this fine-tuning stage, we freeze the layers of the en-
coder network to prevent overfitting and reduce computational
complexity. The final architecture is shown in Figure 2.

4. Experimental evaluation
To analyse the impact of the proposed SFW and transfer learn-
ing strategy for children’s speech ASR, we evaluate our ap-
proach on the test set of the PF-STAR British English Children’s
Speech corpus [31]. The dataset contains 7.4 and 5.8 hours of
transcribed audio for the training and test partitions, respec-
tively. The age of the children in the dataset range from 4 to
14 years. Following other papers [32, 15, 33], we use the train-
ing subset of the WSJCAM0 corpus [34] as out-of-domain adult
data, containing 15.5 hours of British English speech across 92
speakers.

4.1. Source-filter warping

To apply our proposed SFW augmentation strategy, power spec-
trograms with a window size of 25 ms and hop length of 10 ms
are generated from the adult speech waveforms using an FFT
length of 512. Subsequently, we use the algorithm described
in Section 2.2.1 with γ = 0.2 to estimate the filter and source
component on which we apply our warping function given by
Equation 3. As we warp both components independently, we
allow warping coefficients α and β to be relatively high by ran-
domly choosing a value between 1 and 1.3.

Since our end-to-end ASR system acts on the waveform
of the input signal, we need to convert the spectral represen-
tation back to the temporal domain. The Griffin-Lim algo-
rithm [35, 36] is used to estimate the phase component of the
STFT power spectrograms. To limit the computational impact,
the alternating forward and inverse STFT step in the algorithm
is only repeated 8 times.

4.2. Acoustic model training

Our model is pre-trained self-supervised on unlabelled adult
speech data to learn meaningful acoustic representations of
speech using the architecture depicted in Figure 2. More de-
tails about the pre-training step are described in [10].

During fine-tuning, we pool the training data of the PF-
STAR and WSJCAM0 datasets together with equal sampling
probability for both domains during batch construction. A batch
size of 48 is used and the model is trained for 60K steps using
the AdamW [37] optimizer. The learning rate starts at 5e-5,
followed by a warmup stage of 500 steps to 1e-4 and then lin-



early decreases to 0. The input waveform is mean and vari-
ance normalized and randomly cropped according to a random
start and end timestamp of the transcriptions. The crop size is
limited to contain between 2 and 4 seconds of audio with no
usage of SpecAugment [38]. We found this to be more effec-
tive and faster to train as opposed to using longer utterances
with SpecAugment enabled. A bi-gram in-domain language
model (LM) was employed to decode the test utterances, similar
to [15]. The out-of-vocabulary (OOV) rate of the LM is 2.27%
with a perplexity of 70.3 with respect to the PF-STAR test set.

5. Results
Table 1 shows the performance of the proposed transfer learn-
ing approach and SFW augmentation strategy. The baseline
performance of our ASR system using a language model and
no data augmentation strategy trained on children’s data gath-
ers a strong baseline result of 6.89% WER on the PF-STAR test
set. Including the out-of-domain adult WSJCAM0 dataset im-
proves performance on the children’s test set only negligibly.
We suspect this is mainly due to the extensive self-supervised
pre-training of the model on adult data. However, employing
the SFW strategy during training on the adult dataset, we see a
relative improvement of the WER on the children’s test set of
28.4% over the system without adult data augmentation. This
shows that the proposed SFW strategy successfully induces the
characteristics of children’s speech into the adult utterances,
closing the domain gap between the adult and children’s speech
datasets significantly. To the best of our knowledge, this is the
best published result on the PF-STAR test set.

Table 1: WER performance on the PF-STAR test set.

Training data WER(%)

CTC with LM

WSJCAM0 40.94 18.64
PF-STAR 9.53 6.89
PF-STAR + WSJCAM0 9.48 6.79
PF-STAR + WSJCAM0 (SFW) 6.57 4.86

A performance analysis of the proposed SFW in compari-
son to VTLP can be found in Table 2. The baseline system is
trained on adult and children’s speech without any augmenta-
tion strategy. Notably, the artefacts introduced by the temporal
reconstruction of the input signal from the FFT spectrum with
the Griffin-Lim (GL) algorithm has a beneficial robustness ef-
fect, as shown by the GL experiment where we did not apply
any warping augmentation but did convert the input utterances
between the spectral and time domain.

The best performing VTLP configuration with a random
warping factor between 1 and 1.2 improves the WER with
17.8% relative over the baseline with usage of a language
model. The best SFW strategy is gained with α and β randomly
varying independently between 1 and 1.3 and improves the re-
sult further with 12.9% WER relatively over the best VTLP con-
figuration. Due to the independent warping of the source and
filter component, the best SFW configuration allows for higher
maximum warping coefficients as opposed to VTLP, which only
has one parameter to control the warping.

Figure 3 shows the WER of each age group in the PF-STAR
test set from the baseline system together with the best per-
forming VTLP and SFW configuration from Table 2. We see

Figure 3: Bar chart showing the WER on the PF-STAR test set
for each age group using VTLP and the proposed SFW.

Table 2: Performance analysis of source-filter warping.

Method Warp Factors WER(%)

CTC with LM

baseline / 9.48 6.79

GL / 8.38 6.27

VTLP

η = [1, 1.15] 7.79 5.62
η = [1, 1.20] 7.75 5.58
η = [1, 1.25] 8.07 5.96
η = [1, 1.30] 8.32 6.22

SFW

α, β = [1, 1.15] 7.19 5.32
α, β = [1, 1.20] 6.92 5.07
α, β = [1, 1.25] 6.69 4.95
α, β = [1, 1.30] 6.57 4.86

that the performance increase relative to the baseline model is
consistent across all ages, indicating that the proposed SFW is
able to model characteristics of varying age groups. Transcrip-
tion quality is clearly correlated to the age group with the WER
being inversely proportional to the speaker age. An exception
is the group of age 11, we suspect the degradation is mainly
due to the more complex text transcriptions appearing in this
age group [31]. Interestingly, we see that the largest perfor-
mance improvement of SFW over VTLP is manifested in the
younger age groups. We believe this is due to the benefit of in-
dependently warping the source and filter component in SFW,
as younger children exhibit more varying formant locations and
fundamental frequencies as opposed to older children.

6. Conclusion
In this paper, we applied transfer learning on a Transformer
model pre-trained with adult speech and proposed the source-
filter warping data augmentation strategy for robust children’s
speech ASR. Using a few hours of in-domain children’s speech
data, our fine-tuned Transformer model scores a WER of 6.79%
on the PF-STAR children’s speech test set. Applying our pro-
posed source-filter warping strategy to close the adult and chil-
dren’s speech domain gap improves this strong baseline system
with a final WER of 4.86%, significantly outperforming previ-
ous state-of-the-art results on the PF-STAR test set.
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