

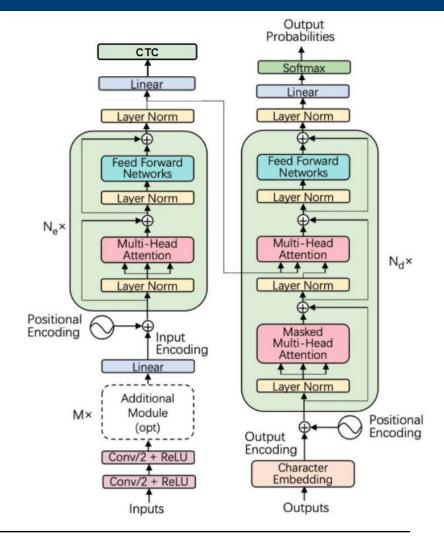
Exploring Effective Data Utilization For Low-Resource Speech Recognition

Zhikai Zhou, Wei Wang, Wangyou Zhang, Yanmin Qian

X-LANCE Lab, Shanghai Jiao Tong University, China

May 2022

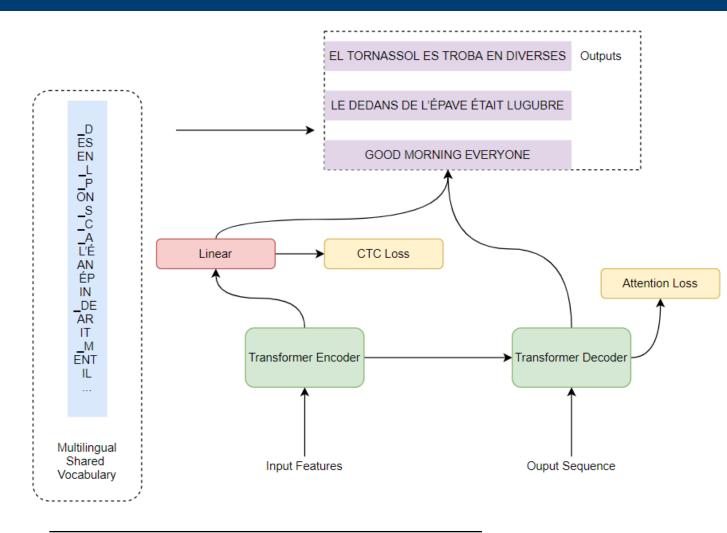
Background


Low-Resource ASR

- There are more than 6,000 languages in the world
- Only several languages have enough data to build the ASR system
- How to build the ASR system for low-resource languages?
 - Data Augmentation
 - Transfer Learning(Utilize data from other languages)
 - Unsupervised/Semi-supervised Learning(Utilize data without label)

Background

Related work – Transformer-based E2E ASR



- Encoder transforms features to hidden representations
- Decoder query previous outputs on hidden representations by the attention mechanism
- Model is trained by both the CTC Loss and Cross Entropy.
- The joint decoding is adopted to predict the output sequence.

L. Dong, S. Xu and B. Xu, "Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for Speech Recognition," 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 5884-5888, doi: 10.1109/ICASSP.2018.8462506.

Background

Related work – Multilingual Pretraining and Finetuning

- A multilingual ASR model is first pretrained in several rich resource languages
- The vocabulary is shared among all rich resource languages
- Then we finetune the ASR model using the target low-resource language

Picture partly from "Hou W, Dong Y, Zhuang B, et al. Large-Scale End-to-End Multilingual Speech Recognition and Language Identification with Multi-Task Learning[C]//INTERSPEECH. 2020: 1037-1041."

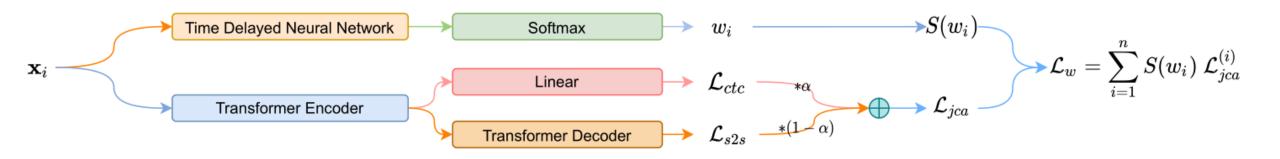
• Data Weighing Based on Language Similarity

Dynamic Curriculum Learning

Length Perturbation

Data Weighing Based on Language Similarity

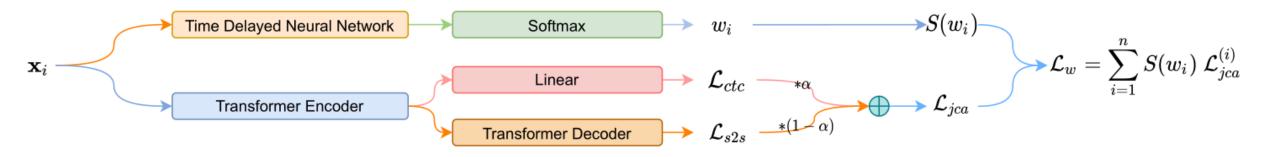
Language	Word	IPA
Catalan	pronunciació	prununsiəsio
French	prononciation	pronõsjasjõ
Italian	pronuncia	pronunt∫a
Portuguese	pronúncia	prunũsja
Basque	ahoskera	aʊ∫kerə


IPA: International Phonetic Alphabet

- An example of word "pronunciation" from different languages.
- Basque is very different from others.

Proposed Method

Data Weighing Based on Language Similarity



- To utilize the similarity between the target and non-target languages
- A language classifier is trained to obtain the similarity in utterance level
- The posterior or embedding similarity is used to weigh the utterance in multilingual corpus

Proposed Method

Data Weighing Based on Language Similarity

Posterior based: $w_i = P(y = l | x_i)$

Si

Sortagrad: Sort samples by lengths

Dynamic Curriculum Learning: Sort samples by Dynamic Difficulty metrics Difficulty Metrics:

• Loss $s(\mathbf{x}; \theta^t) = \mathcal{L}(\mathbf{x}; \theta^t)$

$$s(\mathbf{x}; \theta^t) = rac{\mathcal{L}(\mathbf{x}; \theta^t)}{T}$$

 $s(\mathbf{x}; \theta^t) = -a(\mathbf{x}; \theta^t)$

- Normalized Loss
- Decline based Loss/Accuracy

$$d(\mathbf{x}; \theta^t) = -\frac{s(\mathbf{x}; \theta^{t-1}) - s(\mathbf{x}; \theta^t)}{s(\mathbf{x}; \theta^{t-1})}$$

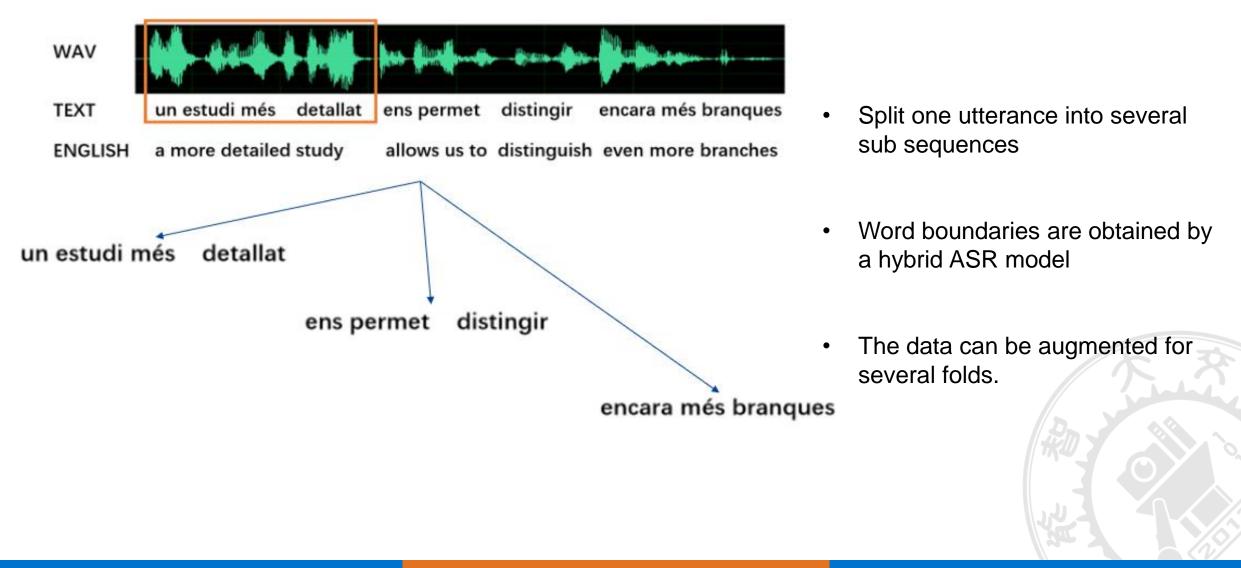
Why Decline based metrics?

- If loss/accuracy has minor changes
 - Low Accuracy: Sample is too hard for model to learn in current status

- High Accuracy: Sample is too simple for model to learn. No further improvement can be achieved
- Big changes: Model can learn much from this sample

Procedure

- For each phase(several epochs), infer the whole training set to get the loss/accuracy values
- Sort and subset the training set


 Gradually increase the amount of training data to cover the entire training set

$$a(t) = \min\left(1, \ a_0 + \frac{\beta t}{T}(1 - a_0)\right)$$

41-

Length Perturbation

Dataset

Common Voice

Language	#Spk.	#Utt.	Duration
Catalan	4,742	317,693	488 hr
Basque	834	61,426	88 hr
Portuguese	717	39,072	48 hr
Italian	4,976	83,407	130 hr
French	11,381	412,332	554 hr

- Rotate the role of the target low-resource language
- Only 10 hours training set for the target language
- Baseline and Speed perturbation (WER) results are as follows

Methods	Catalan dev/test	Basque dev/test	French dev/test	Portuguese dev/test	Italian dev/test
Baseline	21.7/22.0	20.0/21.2	35.8/35.7	19.8/19.0	23.8/23.6
SP_3fold	20.2/20.6	17.5/18.0	32.5/32.5	18.2/17.2	21.3/21.3

Results

Method	Catalan dev/test	Basque dev/test	French dev/test	Portuguese dev/test	Italian dev/test
Baseline	21.7/22.0	20.0/21.2	35.8/35.7	19.8/19.0	23.8/23.6
L.Post	21.5/21.7	19.4/19.9	34.6/34.6	19.6/18.6	22.7/22.6
L.Sim	21.5/21.6	19.3/19.9	34.6/34.7	19.4/18.5	22.7/22.7
U.Post	21.2/21.2	19.0/19.5	34.2/34.3	18.0/17.8	22.0/21.8
U.Sim	20.3/20.4	18.5/19.0	34.1/34.2	17.6/17.0	21.2/21.1

Different data weighing methods(WER%)

- L/U: Language/Utterance Level
- Post: Posterior-based weighing
- Sim: Similarity-based weighing
- The utterance level using the similarity strategy has achieved the best performance.
- All methods achieve better results than the baseline

Results

Methods	Catalan dev/test	Basque dev/test	French dev/test	Portuguese dev/test	Italian dev/test
Baseline	21.7/22.0	20.0/21.2	35.8/35.7	19.8/19.0	23.8/23.6
CL	22.0/22.2	20.8/21.7	35.9/35.8	19.9/19.0	23.8/23.7
DCL_A	20.9/21.1	18.8/19.2	34.0/34.1	18.6/17.4	23.0/22.8
DCL_L	21.0/21.0	18.4/19.0	33.6/33.6	18.5/17.4	22.6/22.4
DCL_L*	20.4/20.6	17.4/18.3	33.0/33.1	17.8/16.7	21.8/21.6

Different curriculum learning methods(WER%)

CL: Traditional Sortagrad

- DCL using normalized loss achieves the best result
- DCL_A/L: Dynamic curriculum learning using accuracy/loss
- DCL_L*: Dynamic CL using normalized loss

•

Results

Methods	Catalan dev/test	Basque dev/test	French dev/test	Portuguese dev/test	Italian dev/test
Baseline	21.7/22.0	20.0/21.2	35.8/35.7	19.8/19.0	23.8/23.6
SP_3fold	20.2/20.6	17.5 /18.0	32.5/ 32.5	18.2/17.2	21.3/21.3
LP_2fold	20.7/20.6	19.7/20.8	35.9/35.8	19.7/19.0	23.5/23.3
LP_3fold	20.1/20.1	18.7/20.6	34.1/34.1	18.8/18.2	22.1/22.7
LP_4fold	20.1/19.8	17.6/ 17.9	32.4/32.5	18.2 /17.5	20.7/20.6
LP_5fold	20.2/20.0	18.1/19.1	33.2/33.3	18.7/18.0	21.2/21.0
SP+LP	18.7/18.8	16.8/17.2	31.4/31.3	17.4/16.3	20.7/20.3

Different Data Augmentation Methods (WER%)

- SP_3fold: Speed Perturbation(0.9,1.0,1.1)
- LP and SP are complementary with each other
- LP_kfold: k fold length perturbation(1/k,2/k,...,1.0)
- SP+LP: SP with LP

Results

Integrated Methods(WER%)					
Methods	Catalan dev/test	Basque dev/test	French dev/test	Portuguese dev/test	Italian dev/test
M0	21.7/22.0	20.0/21.2	35.8/35.7	19.8/19.0	23.8/23.6
M 1	20.2/20.6	17.5/18.0	32.5/32.5	18.2/17.2	21.3/21.3
M2	18.7/18.8	16.8/17.2	31.4/31.3	17.4/16.3	20.7/20.3
M3	18.0/18.1	16.0/16.7	30.8/30.7	17.0/15.9	20.0/19.8
M4	17.7/17.6	15.0/16.0	30.5/30.4	16.2/15.0	18.9/18.7

- M0: Baseline
- M1: Baseline + SP
- M2: M1 + LP
- M3: M2 + Data Weighing
- M4: M3 + Dynamic Curriculum Learning
- Three methods can be composed with others which achieve much better results

Methods	Tatar dev/test	Kabyle dev/test	Kinyarwanda dev/test
M 0	26.6/27.1	53.4/53.1	48.3/48.5
M 1	23.3/23.9	51.0/51.7	45.7/46.0
M2	18.5/18.7	43.0/42.9	42.6/42.7
M3	17.8/18.1	42.5/42.3	41.5/41.6
M 4	16.2/16.2	40.9/40.8	37.4/37.7

Results on Non Indo-European Languages

- M0 M4 are the same as before
- Evaluate our methods on non Indo-European Languages
- Rich Resource languages are fr,pt,it,ca,eu(the same as basic setup)

Zhikai Zhou

Thanks !

