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Far-field wireless power transfer (WPT):
WPT generates and transmits suitable RF signals that propagate over the air before being captured
and rectified into DC current via rectenna circuits at the receivers.

Motivation:

« Free of periodic replacement or wires;

« Sustainable power sources for the internet of things (IoT) [1];
* Green technology and reduction in energy consumption [1].

Feasibility:
 Lower power consumption on computing [2];

« Performance enhancement in WPT, i.e., advanced rectenna circuits, higher-efficient waveform
design [3].

Object: to boost the power harvesting performance in WPT by designing the waveform

of the multi-carrier signals.

L/ °

[1] Perera, Tharindu D. Ponnimbaduge, et al. "Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges." IEEE Communications
Surveys & Tutorials 20.1 (2017): 264 302
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Far-field wireless power transfer (WPT):
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Fig 1. Block diagram ola generic WPT system.
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Fig 2. The transfer characteristics of the non-
linear high power amplifier (HPA).
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Fig 3. The transfer characteristics of the non-

linear rectifier.

Object: designing waveforms considering both HPA’s and rectifier’s non-linearity.
-

[3] Clerckx, Bruno, and Ekaterina Bayguzina. "Waveform design for wireless power transfer." IEEE Transactions on Signal Processing 64.23 (2016): 6313-6328.
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Fig 4. The WPT structure with transmitter’s and rectenna’s non-linearity. The transmitter is composed of a non-
linear HPA and a band pass filter (BPF). The rectenna is composed of a non-linear rectifier and a low pass filter.
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We use the solid state power amplifier (SSPA)’s model here.” G is the small signal gain of SSPA, Ag is the
saturation power of SSPA, and ,B is the smoothing parameter[4].

[4] Banelli, Paolo, Giuseppe Baruffa, and Saverio Cacopardi. "Effects of HPA nonlinearity on frequency multiplexed OFDM signals." IEEE Transactions on
Broadcastina 47 .2 (2001)' 123-136
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Fig 3. The WPT structure with transmitter’s and rectenna’s non-linearity. The transmitter is composed of a non-
linear HPA and a band pass filter (BPF). The rectenna is composed of a non-linear rectifier and a low pass filter.

The harvested power is proportional to the scaling term [3]:
~ 2 ~ 4
Zoc = kRt {R{TO) |+ kiR {R{TO}}.

where ki = is /(! (770Vo)i) with is being the reverse bias saturation current, 7,being the ideality factor, V,

being the thermal voltage of the diode and

Rambeing the characteristic impedance of the receiving antenna.

[3] Clerckx, Bruno, and Ekaterina Bayguzina. "Waveform design for wireless power transfer." IEEE Transactions on Signal Processing 64.23 (2016): 6313-6328.
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Algorithm 1: Successive convex programming (SCP)

Input: ({wh} {4}, >0+ 1;
1?2 g:tput ({@wah{@a )"

gin i 28 | 25 pess:
1 ) ‘Xm (t)‘ 1_()7”] ('[)) gk 1:Compute ({a}.{&})\ at the operating

> < P":nax, point ({@%},{#})*~1) using Taylor expansion;
2:Compute ({w! }.{#¥})® using Algorithm 2;
3:Update (). (@5 ({5} {25 ;
4:Quit if

19 = 2 [{wRRF DO —({wa b {®mh | < eor

< pmax. 5:lel+1;

Step 1: successive convex programming (SCP)

for the objective function (Algorithm 1) Algorithen J¢ luforice point

Input: ({wi} {@}) 5 ({wi}{@5}) Y, e>0,
At the I-th iteration, the objective function is approximated as: 1B >0ep>0;
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Step 2: interior-point (IP) method ?,3‘;‘1"’:2‘},;3; =D e (b))
(Algorithm 2) 4:tpt, ({wh{@n}) )« ({wp M@ )@
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PO ——igearra | | : | | Setup: a Wi-Fi-like scenario with f; = 5. 18 GHz.
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e | R, = 500
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Path loss: 58 dBi; Antenna gain: 2 dBi.
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« HPA’s non-linearity degrades the
power harvesting performance.
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al « HPA's saturation power limits the
e power harvesting performance.
Py
& | | | | | »  The proposed waveform (red)
5 0 5 10 15 20 2 outperforms the waveform
PL™ (dBW) considering rectenna’s non-linearity
Fig.5 Power harvesting performance with G=1, As=10 onIy (b|ue)

dBV, pm==25 dBW, N=8, M=1.
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‘Ideal HPA' (black)  Assume an ideal linear HPA (benchmark) sager less Sl_II%ZIaSS
‘OPT’ (red) The proposed waveform deg radation.

‘Decoupling’ (blue)  Waveform in [3] only considering rectenna’s non-linearity

‘PAPR’ (green) Add PAPR constraints compared with ‘Decoupling’

[3] Clerckx, Bruno, and Ekaterina Bayguzina. "Waveform design for wireless power transfer." IEEE Transactions on Signal Processing 64.23 (2016): 6313-6328.
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« Larger HPA's saturation power, larger
54 . . - - - - harvested power.

o « For the saturation power large enough,
the proposed waveform achieves the
largest harvested power as with an ideal
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z } HPA.
E wor i . .
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N e _ the power harvesting performance.
Decoupling in [7] +
o A=21dBV l
4| © AF19dBY L
+ A=17dBY .
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66 : : : '
’ > 10 t * 30 « The harvested power saturates with

increasing N.
Fig.6 Power harvesting performance as a function of N
ith different A, G=1, P;™=25 dBW, P™ = 25dBW, .
with different A in t (In contrast with [3], where the harvested

power is proportionally to N.)

[3] Clerckx, Bruno, and Ekaterina Bayguzina. "Waveform design for wireless power transfer." IEEE Transactions on Signal Processing 64.23 (2016): 6313-6328.
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