

INTRODUCTION

Speaker verification

Are two utterances are spoken by the same person?

Cross-lingual challenges

Underestimation of speaker similarity in within-speaker cross-lingual trials.

Proposals

Cross-lingual fine-tuning \rightarrow increase intra-speaker cross-lingual (CL) samples during fine-tuning (FT).

Language-aware calibration \rightarrow incorporate language information in the logistic regression calibration stage.

BASELINE-SYSTEM: FWSE-RESNET

ResNet architecture enhanced by:

Frequency-wise Squeeze-Excitation (fwSE)

Calculates the mean descriptor across the feature maps per frequency-channel.

Feature maps

SE-Descriptors

Positional encoding

Frequency positional encodings

Feature maps

Enables the architecture to model frequency-dependent information.

Fig. 2 addition of frequency positional encodings in fwSE-ResNet

TACKLING THE SCORE SHIFT IN CROSS-LINGUAL SPEAKER VERIFICATION BY EXPLOITING LANGUAGE INFORMATION

JENTHE THIENPONDT, BRECHT DESPLANQUES, KRIS DEMUYNCK jenthe.thienpondt@ugent.be brecht.desplanques@ugent.be

CROSS-LINGUAL FINE-TUNING

Approach

- I. Fine-tune model using previously proposed largemargin fine-tuning strategy.
- 2. Increase cross-lingual samples during FT step.

Configuration

- Select S random speakers from all N speakers.
- Select U cross-lingual utterances for each selected speaker.
- Cross-linguality determined by external language identifier.
- Resulting mini-batch size is $S \times U$.

Fig. 3. UMAP reduced embeddings of similar speakers in VoxCeleb2

Similar male speakers before LM-FT Similar male speakers after LM-FT

QUALITY-AWARE SCORE CALIBRATION

With cost of false alarms C_{fa} ,cost of a miss C_{miss} and prior target probability π :

$$l(s) \ge \log \frac{C_{fa}}{C_{miss}} - \log it \pi$$

Calibrated system output scores

Bayes decision threshold η

Quality-aware calibration mapping function:

$$l(s) = w_s s + \boldsymbol{w}_q^T \boldsymbol{q} + b$$

with output score s, score weight w_s , bias b, learnable quality weights \mathbf{w}_a and quality vector \mathbf{q}

 \rightarrow verification decision threshold depends on the quality of the trial:

 $w_s s + b \geq \eta - \boldsymbol{w}_a^T \boldsymbol{q}$

Similarity of language class probabilities • Jensen-Shannon (JS) distance between both language classification probabilities:

Similarity of language embeddings • Cosine distance of the language embeddings of the enrollment and test side of the trial:

LANGUAGE-BASED QUALITY MEASURES (QM)

Approach

Include language information from an external language classifier in the calibration stage to compensate for score shifts due to cross-linguality.

Binary cross-linguality indicator Classification output of language classifier:

 $\max(\cos(s_e, s_i)) = \max(\cos(s_t, s_i))$

Fig. 4 Classification output of external language classifier

$$IS\left(\left\{\frac{\cos(s_e, s_i)}{\sum_{j=1}^N \cos(s_e, s_j)}\right\}, \left\{\frac{\cos(s_t, s_i)}{\sum_{j=1}^N \cos(s_t, s_j)}\right\}\right)$$

Fig. 5 Cosine distance between language embeddings

++ COSIN • Including language-based quality measure functions (QMF) in the calibration stage improves crosslingual performance.

Results of fusion submission on VoxSRC-21 test

BASELINE -BASELINE

GHENT UNIVERSITY

EXPERIMENTS & RESULTS

	EER(%)	MINDCF
NET	2.82	0.1538
NET + LM-FT	2.41	0.1343
ESNET + CL LM-FT	2.25	0.1234

	EER(%)	MINDCF
JRATION QMF	2.11	0.1143
YQMF	1.84	0.1038
N-SHANNON QMF	1.67	0.0899
NE DISTANCE QMF	1.63	0.0827

• The cosine similarity of language embeddings results in the best performance.

	EER(%)	MINDCF
+ LM-FT + QMF	2.78	0.1690
E + LM-FT + LANG QMF	2.72	0.1492

• Results using cosine distance language QMF. \rightarrow 3rd place on supervised closed task of VoxSRC-21