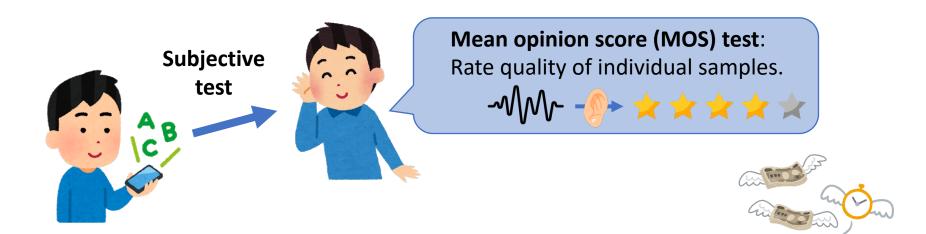
Generalization Ability of MOS Prediction Networks

Erica Cooper¹, Wen-Chin Huang², Tomoki Toda², Junichi Yamagishi¹

¹National Institute of Informatics, Japan ²Nagoya University, Japan

IEEE ICASSP 2022

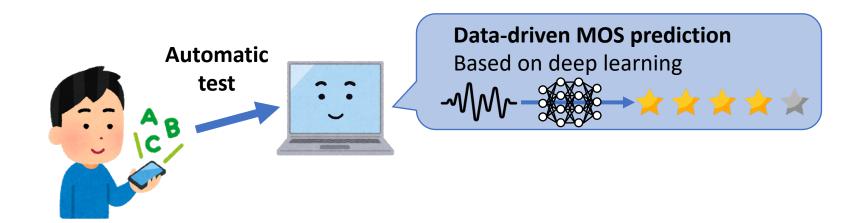

Singapore

Outline

- Motivation
- Research questions
- Datasets
- Experiments
- Conclusions

Motivation

Listening tests: evaluate speech synthesis systems, e.g. text-to-speech (TTS), voice conversion (VC).


Drawbacks:

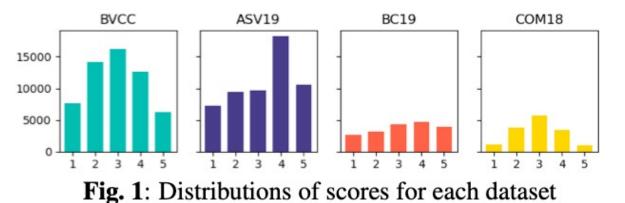
1.Expensive: Costs time and money.**2.Context-dependent**: numbers cannot be meaningfully compared across different listening tests.

Motivation

Automatic speech quality assessment: predict human ratings using data.

Drawback: Bad generalization ability to unseen systems and listening tests.

Research Questions


- What can help to improve generalization ability?
 - A large and diverse training dataset?
 - Data augmentation?
 - Self-supervised learning (SSL) based speech models?
 - Fine-tuning on a small amount of target-domain data?
- What types of **unseen conditions** are the most difficult for MOS prediction?

Datasets

 BVCC: English TTS and VC systems spanning over a decade, collected from past Blizzard Challenges, Voice Conversion Challenges, and ESPnet-TTS. Main (in-domain) dataset.

• Out-of-domain (OOD) datasets:

- ASV19: English samples from a variety of state-of-the-art TTS and VC systems for the ASVSpoof Challenge in 2019.
- **BC19:** Chinese TTS samples from the Blizzard Challenge 2019
- COM18: Japanese TTS combining four different acoustic models and four different vocoders in 2018.

Name	samp	ratings per samp	spk	sys
BVCC	7106	8	27	187
ASV2019	18079	1-26	67	14
BC2019	1352	10-17	1	26
COM2018	4760	1-9	1	10

Training/development/testing splits

- Training/development/testing splits were chosen to match the overall distribution of scores as closely as possible for each dataset
- Unseen speakers, systems, listeners, and texts were held out for each development and test set where possible

- BVCC (in-domain): Training/Validation/Test 70% / 15% / 15%
- OOD: Fine-tuning/Validation/Test 33% / 33% / 33%

Name	unseen spk	unseen sys	unseen listeners	unseen texts
BVCC	1	6	8	5
ASV2019	4	2	10	-
BC2019	-	2	70	2
COM2018	-	1	5	5

Experiments

- MOSNet trained on BVCC
- Fine-tune SSL models for the MOS prediction task using BVCC
- Zero-shot and fine-tuned MOS prediction performance on OOD datasets

• Evaluation metrics:

- Mean squared error (MSE): Absolute difference between actual and predicted MOS
- Linear Correlation Coefficient (LCC): Simple correlation
- Spearman Rank Correlation Coefficient (SRCC): Ranking-based correlation
- Kendall Tau Rank Correlation (KTAU): Ranking-based correlation that is more robust to errors

- MOSNet: a CNN-BLSTM architecture for MOS prediction
- Experiments:
 - Zero-shot performance of MOSNet pretrained on VCC2018
 - Train MOSNet from scratch on BVCC
 - Fine-tune pretrained MOSNet on BVCC
 - Fine-tune pretrained MOSNet on BVCC + silence augmentation
 - Fine-tune pretrained MOSNet on BVCC + speed augmentation
 - Fine-tune pretrained MOSNet on BVCC + both augmentations

		Uttera	nce level		System level			
Model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU
Pretrained	0.831	0.374	0.393	0.275	0.541	0.354	0.352	0.243
From scratch	0.777	0.304	0.261	0.178	0.504	0.239	0.181	0.117
Fine-tuned	0.417	0.715	0.711	0.529	0.162	0.852	0.862	0.663
FT+sil.aug	0.428	0.713	0.709	0.528	0.153	0.854	0.861	0.665
FT+speed aug	0.421	0.716	0.707	0.526	0.176	0.857	0.867	0.672
FT+both aug	0.305	0.796	0.791	0.604	0.096	0.905	0.912	0.737

"MOSNet: Deep Learning based Objective Assessment for Voice Conversion" (Lo et al., Interspeech 2019)

- MOSNet: a CNN-BLSTM architecture for MOS prediction
- Experiments:
 - Zero-shot performance of MOSNet pretrained on VCC2018
 - Train MOSNet from scratch on BVCC
 - Fine-tune pretrained MOSNet on BVCC
 - Fine-tune pretrained MOSNet on BVCC + silence augmentation
 - Fine-tune pretrained MOSNet on BVCC + speed augmentation
 - Fine-tune pretrained MOSNet on BVCC + both augmentations

	I	Uttera	nce level		System level			
Model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU
Pretrained	0.831	0.374	0.393	0.275	0.541	0.354	0.352	0.243
From scratch	0.777	0.304	0.261	0.178	0.504	0.239	0.181	0.117
Fine-tuned	0.417	0.715	0.711	0.529	0.162	0.852	0.862	0.663
FT+sil.aug	0.428	0.713	0.709	0.528	0.153	0.854	0.861	0.665
FT+speed aug	0.421	0.716	0.707	0.526	0.176	0.857	0.867	0.672
FT+both aug	0.305	0.796	0.791	0.604	0.096	0.905	0.912	0.737

"MOSNet: Deep Learning based Objective Assessment for Voice Conversion" (Lo et al., Interspeech 2019)

- Training from
 scratch on BVCC was
 worse than simply
 using the pretrained
 model!
 - BVCC has a smaller number of audio samples in total than VCC2018 (but with more ratings per sample)₉ -> not enough data!

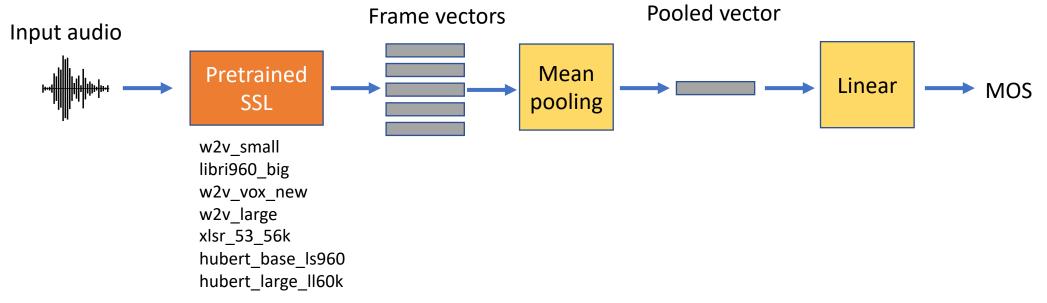
- MOSNet: a CNN-BLSTM architecture for MOS prediction
- Experiments:
 - Zero-shot performance of MOSNet pretrained on VCC2018
 - Train MOSNet from scratch on BVCC
 - Fine-tune pretrained MOSNet on BVCC
 - Fine-tune pretrained MOSNet on BVCC + silence augmentation
 - Fine-tune pretrained MOSNet on BVCC + speed augmentation
 - Fine-tune pretrained MOSNet on BVCC + both augmentations

	ĺ	Uttera	nce level		System level			
Model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU
Pretrained	0.831	0.374	0.393	0.275	0.541	0.354	0.352	0.243
From scratch	0.777	0.304	0.261	0.178	0.504	0.239	0.181	0.117
Fine-tuned	0.417	0.715	0.711	0.529	0.162	0.852	0.862	0.663
FT+sil.aug	0.428	0.713	0.709	0.528	0.153	0.854	0.861	0.665
FT+speed aug	0.421	0.716	0.707	0.526	0.176	0.857	0.867	0.672
FT+both aug	0.305	0.796	0.791	0.604	0.096	0.905	0.912	0.737

"MOSNet: Deep Learning based Objective Assessment for Voice Conversion" (Lo et al., Interspeech 2019)

> Fine-tuning the pretrained model gives a large jump in performance

- MOSNet: a CNN-BLSTM architecture for MOS prediction
- Experiments:
 - Zero-shot performance of MOSNet pretrained on VCC2018
 - Train MOSNet from scratch on BVCC
 - Fine-tune pretrained MOSNet on BVCC
 - Fine-tune pretrained MOSNet on BVCC + silence augmentation
 - Fine-tune pretrained MOSNet on BVCC + speed augmentation
 - Fine-tune pretrained MOSNet on BVCC + both augmentations


		Uttera	nce level		System level			
Model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU
Pretrained	0.831	0.374	0.393	0.275	0.541	0.354	0.352	0.243
From scratch	0.777	0.304	0.261	0.178	0.504	0.239	0.181	0.117
Fine-tuned	0.417	0.715	0.711	0.529	0.162	0.852	0.862	0.663
FT+sil.aug	0.428	0.713	0.709	0.528	0.153	0.854	0.861	0.665
FT+speed aug	0.421	0.716	0.707	0.526	0.176	0.857	0.867	0.672
FT+both aug	0.305	0.796	0.791	0.604	0.096	0.905	0.912	0.737

Using both kinds of data augmentation improves even more

"MOSNet: Deep Learning based Objective Assessment for Voice Conversion" (Lo et al., Interspeech 2019)

Experiments: Fine-tune SSL using BVCC

Really simple fine-tuning of pretrained Fairseq models for the MOS prediction task

https://github.com/pytorch/fairseq

Experiments: Fine-tune SSL using BVCC

		Test set										
		Uttera	nce level			Syste	m level					
Base model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU				
w2v_small	0.227	0.868	0.866	0.690	0.121	0.938	0.942	0.790				
libri960_big	0.342	0.823	0.820	0.635	0.136	0.901	0.901	0.730				
w2v_vox_new	0.342	0.767	0.753	0.570	0.112	0.903	0.900	0.721				
v2v_large	0.220	0.868	0.865	0.690	0.059	0.948	0.944	0.803				
lsr_53_56k	0.281	0.821	0.816	0.633	0.107	0.902	0.894	0.730				
nubert_base_ls960	0.318	0.842	0.837	0.655	0.213	0.919	0.915	0.745				
ubert_large_ll60k	0.444	0.696	0.687	0.507	0.184	0.812	0.805	0.620				

Experiments: Fine-tune SSL using BVCC

Test set										
	Uttera	nce level			System level					
MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU			
0.227	0.868	0.866	0.690	0.121	0.938	0.942	0.790			
0.342	0.823	0.820	0.635	0.136	0.901	0.901	0.730	Third best		
0.342	0.767	0.753	0.570	0.112	0.903	0.900	0.721	model on		
0.220	0.868	0.865	0.690	0.059	0.948	0.944	0.803	dev set.		
0.281	0.821	0.816	0.633	0.107	0.902	0.894	0.730	XLSR was		
0.318	0.842	0.837	0.655	0.213	0.919	0.915	0.745	pretrained		
0.444	0.696	0.687	0.507	0.184	0.812	0.805	0.620	multiling u data.		
	0.227 0.342 0.342 0.220 0.281 0.318	MSELCC0.227 0.868 0.3420.8230.3420.767 0.2200.868 0.2810.8210.3180.842	MSELCCSRCC0.227 0.8680.866 0.3420.8230.8200.3420.7670.753 0.2200.868 0.8650.2810.8210.8160.3180.8420.837	Utterance levelMSELCCSRCCKTAU0.227 0.8680.8660.690 0.3420.8230.8200.6350.3420.7670.7530.570 0.2200.868 0.865 0.690 0.2810.8210.8160.6330.3180.8420.8370.655	Utterance levelMSELCCSRCCKTAUMSE0.2270.8680.8660.6900.1210.3420.8230.8200.6350.1360.3420.7670.7530.5700.1120.2200.8680.8650.6900.0590.2810.8210.8160.6330.1070.3180.8420.8370.6550.213	Utterance levelSystemMSELCCSRCCKTAUMSELCC0.2270.8680.8660.6900.1210.9380.3420.8230.8200.6350.1360.9010.3420.7670.7530.5700.1120.9030.2200.8680.8650.6900.0590.9480.2810.8210.8160.6330.1070.9020.3180.8420.8370.6550.2130.919	Utteraırce level MSEKTAUMSESystem level LCCSRCC0.2270.8680.8660.6900.1210.9380.9420.3420.8230.8200.6350.1360.9010.9010.3420.7670.7530.5700.1120.9030.9000.2200.8680.8650.6900.0590.9480.90440.2810.8210.8160.6330.1070.9020.8940.3180.8420.8370.6550.2130.9190.915	Utterar-ce level MSESystem level LCCSRCCKTAUMSELCCSRCCKTAU0.2270.8680.8660.6900.1210.9380.9420.7900.3420.8230.8200.6350.1360.9010.9010.7300.3420.7670.7530.5700.1120.9030.9000.7210.2200.8680.8650.6900.0590.9480.9440.8030.2810.8210.8160.6330.1070.9020.8940.7300.3180.8420.8370.6550.2130.9190.9150.745		

- We picked the best and most interesting models trained/fine-tuned on BVCC in the previous experiments and analyzed their generalization ability
 - MOSNet:
 - Pretrained on VCC2018
 - Fine-tuned to BVCC
 - Fine-tuned to BVCC + two kinds of data augmentation
 - SSL fine-tuned to BVCC:
 - w2v_small
 - w2v_large
 - xlsr (multilingual)
- 2 generalization scenarios:
 - Zero-shot: OOD data is completely unseen
 - Fine-tuned using the fine-tuning set of the OOD data

 Table 5: Out-of-domain utterance-level results

MN PT = MOSNet	
pretrained	

MN FT-BVCC = pretrained MOSNet fine-tuned on BVCC

MN FT + aug = pretrained MOSNet fine-tuned on dataaugmented BVCC

		Zer	o-shot		Fine-tune					
Model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU		
ASV2019										
MN PT	1.912	0.142	0.159	0.112	1.217	0.379	0.386	0.273		
MN FT-BVCC	1.641	0.218	0.219	0.154	1.249	0.386	0.401	0.286		
MN FT+aug	1.617	0.199	0.218	0.153	1.240	0.368	0.377	0.268		
w2v_small	1.498	0.470	0.491	0.352	1.073	0.541	0.558	0.405		
w2v_large	1.589	0.453	0.478	0.344	1.065	0.548	0.557	0.404		
xlsr	1.371	0.409	0.423	0.301	1.192	0.518	0.525	0.377		
	BC2019									
MN PT	0.823	0.432	0.402	0.276	0.443	0.738	0.690	0.514		
MN FT-BVCC	1.328	0.444	0.470	0.321	0.444	0.743	0.692	0.517		
MN FT+aug	2.202	0.407	0.488	0.334	0.406	0.770	0.705	0.526		
w2v_small	3.672	0.553	0.559	0.409	0.356	0.878	0.840	0.651		
w2v_large	3.023	0.575	0.618	0.440	0.235	0.879	0.841	0.653		
xlsr	1.924	0.576	0.596	0.414	0.274	0.858	0.812	0.621		
			COM	12018						
MN PT	0.510	0.398	0.383	0.269	0.404	0.574	0.533	0.386		
MN FT-BVCC	0.768	0.420	0.391	0.276	0.458	0.558	0.535	0.387		
MN FT+aug	0.797	0.375	0.357	0.251	0.433	0.550	0.522	0.376		
w2v_small	1.200	0.476	0.423	0.297	0.352	0.674	0.667	0.497		
w2v_large	0.951	0.425	0.380	0.268	0.436	0.559	0.535	0.387		
xlsr	0.558	0.501	0.480	0.341	1.383	0.369	0.379	0.268		

 Table 5: Out-of-domain utterance-level results

MN PT = MOSNet	
pretrained	

MN FT-BVCC = pretrained MOSNet fine-tuned on BVCC

MN FT + aug = pretrained MOSNet fine-tuned on dataaugmented BVCC

		Zere	o-shot			Fine	e-tune	
Model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU
			ASV	2019				
MN PT	1.912	0.142	0.159	0.112	1.217	0.379	0.386	0.273
MN FT-BVCC	1.641	0.218	0.219	0.154	1.249	0.386	0.401	0.286
MN FT+aug	1.617	0.199	0.218	0.153	1.240	0.368	0.377	0.268
w2v_small	1.498	0.470	0.491	0.352	1.073	0.541	0.558	0.405
w2v_large	1.589	0.453	0.478	0.344	1.065	0.548	0.557	0.404
xlsr	1.371	0.409	0.423	0.301	1.192	0.518	0.525	0.377
			BC	2019				
MN PT	0.823	0.432	0.402	0.276	0.443	0.738	0.690	0.514
MN FT-BVCC	1.328	0.444	0.470	0.321	0.444	0.743	0.692	0.517
MN FT+aug	2.202	0.407	0.488	0.334	0.406	0.770	0.705	0.526
w2v_small	3.672	0.553	0.559	0.409	0.356	0.878	0.840	0.651
w2v_large	3.023	0.575	0.618	0.440	0.235	0.879	0.841	0.653
xlsr	1.924	0.576	0.596	0.414	0.274	0.858	0.812	0.621
			COM	12018				
MN PT	0.510	0.398	0.383	0.269	0.404	0.574	0.533	0.386
MN FT-BVCC	0.768	0.420	0.391	0.276	0.458	0.558	0.535	0.387
MN FT+aug	0.797	0.375	0.357	0.251	0.433	0.550	0.522	0.376
w2v_small	1.200	0.476	0.423	0.297	0.352	0.674	0.667	0.497
w2v_large	0.951	0.425	0.380	0.268	0.436	0.559	0.535	0.387
xlsr	0.558	0.501	0.480	0.341	1.383	0.369	0.379	0.268

17

 Table 5: Out-of-domain utterance-level results

	Zero-shot				Fine-tune						
Model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU			
ASV2019											
MN PT	1.912	0.142	0.159	0.112	1.217	0.379	0.386	0.273			
MN FT-BVCC	1.641	0.218	0.219	0.154	1.249	0.386	0.401	0.286			
MN FT+aug	1.617	0.199	0.218	0.153	1.240	0.368	0.377	0.268			
w2v_small	1.498	0.470	0.491	0.352	1.073	0.541	0.558	0.405			
w2v_large	1.589	0.453	0.478	0.344	1.065	0.548	0.557	0.404			
xlsr	1.371	0.409	0.423	0.301	1.192	0.518	0.525	0.377			
BC2019											
MN PT	0.823	0.432	0.402	0.276	0.443	0.738	0.690	0.514			
MN FT-BVCC	1.328	0.444	0.470	0.321	0.444	0.743	0.692	0.517			
MN FT+aug	2.202	0.407	0.488	0.334	0.406	0.770	0.705	0.526			
w2v_small	3.672	0.553	0.559	0.409	0.356	0.878	0.840	0.651			
w2v_large	3.023	0.575	0.618	0.440	0.235	0.879	0.841	0.653			
xlsr	1.924	0.576	0.596	0.414	0.274	0.858	0.812	0.621			
COM2018											
MN PT	0.510	0.398	0.383	0.269	0.404	0.574	0.533	0.386			
MN FT-BVCC	0.768	0.420	0.391	0.276	0.458	0.558	0.535	0.387			
MN FT+aug	0.797	0.375	0.357	0.251	0.433	0.550	0.522	0.376			
w2v_small	1.200	0.476	0.423	0.297	0.352	0.674	0.667	0.497			
w2v_large	0.951	0.425	0.380	0.268	0.436	0.559	0.535	0.387			
xlsr	0.558	0.501	0.480	0.341	1.383	0.369	0.379	0.268			

MN PT = MOSNet pretrained

MN FT-BVCC = pretrained MOSNet fine-tuned on BVCC

MN FT + aug = pretrained MOSNet fine-tuned on dataaugmented BVCC

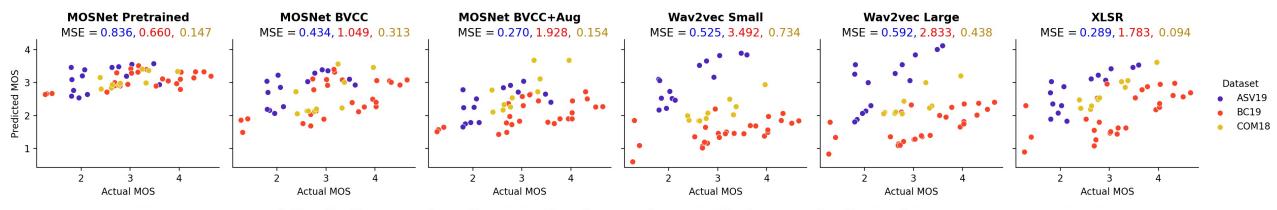
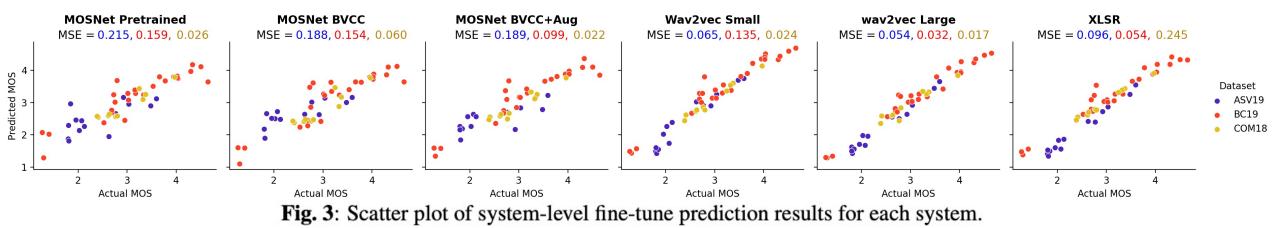
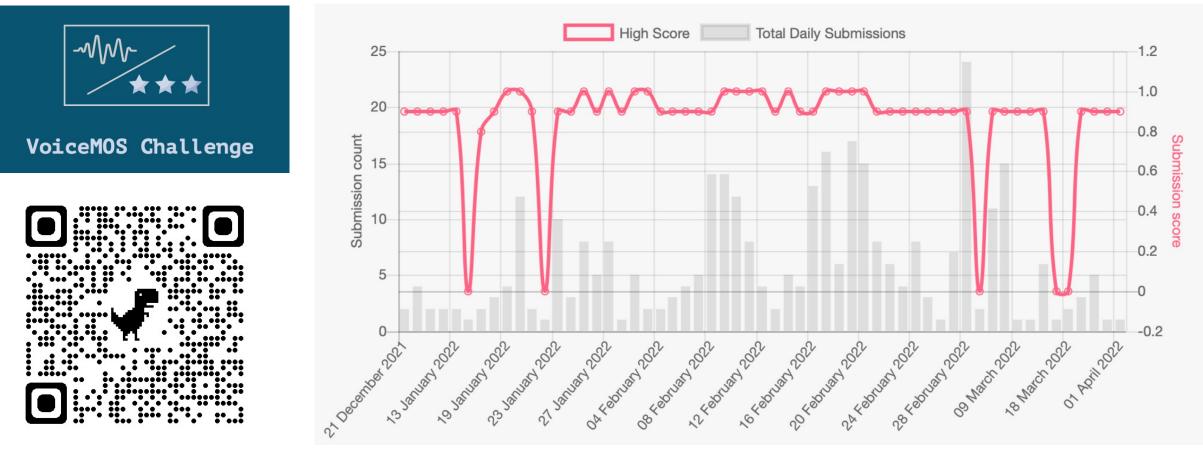



Fig. 2: Scatter plot of system-level zero-shot prediction results for each system.

Analysis of difficulty of unseen categories

Table 6: Analysis of unseen categories. Mean and standard deviations of squared errors for the unseen categories are shown. Unseen categories whose mean squared error is significantly higher than their seen counterparts are shown in bold.


Data	MN PT	MN FT	MN FT-aug	w2v_sm	w2v_lg	xlsr					
Unseen speakers											
ASV19	1.33 ± 1.65	$1.28 {\pm} 1.52$	$1.23 {\pm} 1.48$	$1.02{\pm}1.72$	$1.04{\pm}1.77$	$1.18 {\pm} 2.04$					
Unseen systems											
ASV19	1.36±1.45	1.43±1.51	1.43±1.54	1.23±1.58	1.26±1.82	1.43±2.15					
BC19	0.77±1.11	0.67±1.04	$0.76 {\pm} 1.10$	$0.87 {\pm} 0.98$	$0.41 {\pm} 0.61$	$0.56 {\pm} 0.78$					
COM18	0.42 ± 0.61	$0.50 {\pm} 0.71$	$0.47 {\pm} 0.68$	$0.33 {\pm} 0.48$	$0.52{\pm}0.74$	$0.35{\pm}0.51$					
Unseen listeners											
ASV19	0.76±1.13	$0.70 {\pm} 1.19$	0.71±1.25	0.58±1.46	$0.55{\pm}1.55$	$0.57 {\pm} 1.62$					
Unseen texts											
BC19	0.30 ± 0.31	0.26 ± 0.36	0.35 ± 0.52	0.26 ± 0.43	0.13±0.16	0.23 ± 0.40					
COM19	0.43 ± 0.69	0.51 ± 0.82	$0.48 {\pm} 0.76$	$0.47 {\pm} 0.71$	$0.49 {\pm} 0.75$	$0.51 {\pm} 0.78$					

Conclusions

- A large and diverse training dataset can help to improve MOS prediction
 - In the case where pretrained models are **finetuned**.
 - Although our dataset had broad coverage of different synthesis methods, it was not enough data to train MOSNets from scratch.
- Data augmentation can help to improve automatic MOS prediction
 - But only for smaller models like MOSNet.
 - Data augmentation did **not** improve SSL-based models.
- Self-supervised learning (SSL) based speech models can be successfully finetuned for the MOS prediction task
 - And they can also generalize well to new listening tests with further **finetuning** using only a small amount of OOD data.
- Unseen systems are the most challenging category for MOS predictors to predict.

The VoiceMOS Challenge 2022

Accepted as a special session at Interspeech 2022!

