Multitask Gaussian Process with Hierarchical Latent Interactions

Kai Chen^{†‡} Twan van Laarhoven[‡] Elena Marchiori[‡] Feng Yin^{*†} (⊠) Shuguang Cui^{*†}

*School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China [†]Future Network of Intelligence Institute, The Chinese University of Hong Kong, Shenzhen, China. [‡]Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.

March 2022

Overview

Introduction

- Multitask Gaussian process (MTGP) and kernel function
- Our motivation and contribution

2 Multitask Gaussian process with interactions

- Manner of latent interaction
- Function interaction between LFs
- Coefficient interaction between LMCs
- MTGP with hierarchical interactions

Experiment results

• Performance of multitask learning

Summary & Future work

Introduction

- Multitask Gaussian process (MTGP) and kernel function
- Our motivation and contribution

2 Multitask Gaussian process with interactions

- 3 Experiment results
- Summary & Future work

★ ∃ ▶

Multitask Gaussian process (MTGP)

Figure 1: Single task (a) and multitask (b) learnings

Why multitask learning ?

- A complex system usually consists of multiple correlated tasks;
- Joint learning of these tasks can help us understand the system;
- To obtain higher accuracy and concurrent predictions by transferring knowledge;

< □ ト < 同 ト < 三 ト < 三 ト

Multitask Gaussian process (MTGP)

Why multitask Gaussian process ?

- Interpretability, the correlation between tasks is quantifiable and explainable;
- Uncertainty representation and prediction;
- Less prone to overfitting;

Multitask Gaussian process (MTGP)

Definition of MTGP

A MTGP models *m* tasks as a joint Gaussian distribution,

$$\boldsymbol{f} \sim \mathcal{GP}(\boldsymbol{0}, \boldsymbol{k}_{\mathsf{M}}(\boldsymbol{X}, \boldsymbol{X}')), \tag{1}$$

where
$$\mathbf{y} = \mathbf{f} + \mathbf{\epsilon}$$
, $\mathbf{f} = [f^{(1)}(\mathbf{x}^{(1)}), ..., f^{(m)}(\mathbf{x}^{(m)})]^{\top}$, $X = [\mathbf{x}^{(1)}, ..., \mathbf{x}^{(m)}]^{\top}$,
 $\mathbf{y} = [y^{(1)}, ..., y^{(m)}]^{\top}$, and $k_{\mathsf{M}}(X, X')$ describes both the auto-covariance of each task and the cross covariance between tasks.

• *k*_M determines the representation, smoothness, interpretability, and expressiveness of MTGP.

- 4 B K - 4 B K

Multitask kernel function

The general formula of $k_{\rm M}$ is,

$$K_{\mathsf{M}}(X, X') = \begin{bmatrix} K^{(1,1)}, & K^{(1,m)} \\ K^{(m,1)}, & K^{(m,m)} \end{bmatrix},$$
(2)

where $K^{(m,1)}$ describes the cross covariance between $f^{(m)}$ and $f^{(1)}$.

An expressive k_{M} using linear model of coregionalization (LMC) linearly combines a mixture of Q covariance components to ameliorate the representation of MTGP :

$$K_{\mathsf{M}} = \sum_{i=1}^{Q} B_i \otimes K_{s,i},\tag{3}$$

where B_i is a LMC matrix representing task correlation and $K_{s,i}$ is a matrix constructed by arbitrary kernel of STGP.

Multitask kernel function

Figure 3: Frameworks of MTGPs. In subplot (a), task correlation in MTGP is described by the convolution between latent functions (LFs). In subplot (b), all tasks share a LF space f_s adumbrating their common qualities.

- The LMC has a clearer hierarchical architecture for model explanation;
- The LMC has more compact hyperparameter space due to the shared LF;

Introduction

- Multitask Gaussian process (MTGP) and kernel function
- Our motivation and contribution

2 Multitask Gaussian process with interactions

- 3 Experiment results
- Summary & Future work

→ ∃ →

Our motivation

Limitation of existing MTGPs

- Considers linear combination of LFs as well as kernels;
- Ignores interactions between them;

< ∃ > .

Our contribution

We develop a novel LMC framework with hierarchical interactions for MTGP:

- By using convolution between LFs, we offer a kernel encoding function interactions (FIs) in MTGP for the first time;
- We derive free-form coupling coregionalization (CC) between Cholesky factors of LMCs for coefficient interactions;
- We demonstrate the rich representation, interpretability, and expressiveness of a kernel framework incorporating both the function and coefficient interactions for MTGP.

Introduction

2 Multitask Gaussian process with interactions

- Manner of latent interaction
- Function interaction between LFs
- Coefficient interaction between LMCs
- MTGP with hierarchical interactions
- 3 Experiment results
- 4 Summary & Future work

Manner of latent interaction

 $k_{s,i}$ ensures the generalization of $f_{s,i}(\mathbf{x}^{(m)})$ and we therefore replace it with $k_{\text{SM},i}$

$$f^{(m)}(\mathbf{x}^{(m)}) = \sum_{i=1}^{Q} \alpha_i^{(m)} f_{\mathsf{SM},i}(\mathbf{x}^{(m)}),$$
(4)

where $f_{\text{SM},i} \sim \mathcal{GP}(0, k_{\text{SM},i})$ and $k_{\text{SM},i}(\tau) = \mathcal{F}_{s \to \tau}^{-1} \Big[w_i \mathcal{N}(\mathbf{s}; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \Big](\tau)$.

Due to $f_{SM,i}(\mathbf{x}^{(m)}) \not\perp f_{SM,j}(\mathbf{x}^{(m)})$ and $cov[f_{SM,i}(\mathbf{x}^{(m)}), f_{SM,j}(\mathbf{x}^{(m)})] \neq 0$ when $i \neq j$, we consider two hierarchical interactions in LMC:

• FI between LFs f_{SM,i} and f_{SM,j};

• coefficient interaction between $\alpha_i^{(m)}$ and $\alpha_i^{(m)}$;

Introduction

Multitask Gaussian process with interactions Manner of latent interaction

- Function interaction between LFs
- Coefficient interaction between LMCs
- MTGP with hierarchical interactions
- 3 Experiment results
- 4 Summary & Future work

Function interaction between LFs

By following the so-called generalized convolution spectral mixture (GCSM) in¹ and view it as a general sense of FI between LFs.

$$k_{\text{GCSM}}^{i \times j}(\tau) = c_{ij} \exp\left(-\frac{1}{2}\tau_{\theta}^{\top}\Sigma_{ij}\tau_{\theta}\right) \cos\left(\tau_{\theta}^{\top}\boldsymbol{\mu}_{ij} - \boldsymbol{\phi}_{ij}\pi\right),$$
(5)

where c_{ij} is the cross constant, $\tau_{\theta} = 2\pi(\tau - \frac{\theta_{ij}}{2})$ is the Euclidean distance with time delay, μ_{ij} is cross inverse period, Σ_{ij} is cross inverse length scale, θ_{ij} is cross time delay, and ϕ_{ij} is cross phase delay between $f_{\text{SM},i}$ and $f_{\text{SM},j}$, respectively. Note that $k_{\text{GCSM}}^{i \times j}(\tau) = k_{\text{SM},i}$ for i = j

Chen et al. 2019.

Function interaction between LFs

Figure 4: The illustrations of LFs (a), covariances (b), and SDs (c) of their interaction.

Includes more interaction terms without the increasing of hyperparameter space (if remove time and phase delays).

Introduction

2 Multitask Gaussian process with interactions

- Manner of latent interaction
- Function interaction between LFs
- Coefficient interaction between LMCs
- MTGP with hierarchical interactions
- 3 Experiment results
- 4 Summary & Future work

< ∃ ►

Coefficient interaction between LMCs

For the coefficient interaction between $\alpha_i^{(m)}$ and $\alpha_j^{(m)}$, we reformulate $\alpha_i^{(m)}$ in a free-form parameterized² matrix B_i as $B_i(m, m') = \alpha_i^{(m)} \alpha_i^{(m')}$.

We construct $B_{ij} = B_{L,i}B_{L,j}^{\top}$ to encode the coefficient interaction and interpretate $B_{i,j}$ as a free-form coupling coregionalization (CC).

²Bonilla, Chai and Williams 2008. ([†]CUHK, Shenzhen, [‡]RU, Nijmegen)

Introduction

2 Multitask Gaussian process with interactions

- Manner of latent interaction
- Function interaction between LFs
- Coefficient interaction between LMCs
- MTGP with hierarchical interactions
- 3 Experiment results

4 Summary & Future work

MTGP with hierarchical interactions

For MTGP with Q LFs constructed by using LMC and SM kernel, we have a kernel with hierarchical interactions as follows:

$$K_{\text{GCSM-CC}}(\tau) = \sum_{i=1}^{Q} \sum_{j=1}^{Q} B_{ij} \otimes k_{\text{GCSM}}^{i \times j}(\tau).$$
(6)

 MTGP with k_{GCSM-CC} has richer representation capacity than existing LMC and convolution frameworks because there are Q² − Q cross interaction terms when i ≠ j.

Experiment setting

Performance metric: MAE = $\sum_{i=1}^{n} |y_i - \tilde{y}_i| / n$.

We compare GCSM-CC with some advanced baselines:

- Traditional MTGP³
- GPRN⁴
- CSM⁵
- MOSM⁶

•

³Bonilla, Chai and Williams 2008.
⁴Wilson, Knowles and Ghahramani 2012.
⁵Ulrich et al. 2015.
⁶Parra and Tobar 2017.
([†]CUHK, Shenzhen, [‡]RU, Nijmegen)

→ Ξ →

Introduction

2 Multitask Gaussian process with interactions

Experiment results

• Performance of multitask learning

Summary & Future work

Performance on synthetic multitask

Figure 5: Performance of GCSM-CC (in blue dashed line) and MOSM (in plum dashed line) on synthetic MT.

March 2022 23 / 28

Asymmetric extrapolations of primary tasks

Figure 6: Nitrogen oxides concentration extrapolations.

Experiment performance

Table 1: Performance (MAE) of GCSM-CC and other MTGPs.

Task	SE-LMC	Matérn-LMC	GPRN	CSM	MOSM	GCSM-CC
Mixed signal	0.16 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.12 ± 0.01	0.13 ± 0.01	0.10 ±0.003
Integral	0.26 ± 0.01	0.25 ± 0.02	0.33 ± 0.05	0.19 ± 0.06	0.09 ± 0.004	0.06 ±0.003
Derivative	0.18 ± 0.01	0.19 ± 0.01	0.09 ± 0.01	0.17 ± 0.02	0.08 ± 0.01	$\textbf{0.04} \pm 0.01$
NO ^H	130.96 ± 0.41	$132.89 \pm \! 0.37$	58.16 ± 1.17	52.02 ± 4.28	$53.95 \pm\! 1.04$	41.16 ±0.95
NO <i>S</i>	85.06 ± 0.38	85.19 ± 0.36	45.98 ± 2.61	35.48 ± 1.17	60.81 ± 1.60	$\textbf{33.39} \pm 1.54$

Summary & Future work

Summary

- GCSM-CC with hierarchical interactions includes FI modeled by convolution of SM kernels and coefficient interaction constructed by using free-form coupling coregionalization.
- GCSM-CC advances the learning capacity and interpretability of MTGPs beyond non-interactive frameworks.

Future work

• Interesting future research involves sparse and efficient inference methods for current MTGPs.

References I

- Alvarez, Mauricio A, Lorenzo Rosasco, Neil D Lawrence et al. (2012). "Kernels for vector-valued functions: A review". In: Foundations and Trends® in Machine Learning 4.3, pp. 195–266.
- Bonilla, Edwin V, Kian M Chai and Christopher Williams (2008). "Multi-task Gaussian process prediction". In: Advances in neural information processing systems, pp. 153–160.
- Chen, Kai et al. (2019). "Incorporating Dependencies in Spectral Kernels for Gaussian Processes". In: Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2019, Würzburg, Germany.
- Parra, Gabriel and Felipe Tobar (2017). "Spectral Mixture Kernels for Multi-Output Gaussian Processes". In: Advances in Neural Information Processing Systems, pp. 6684–6693.
- Rasmussen, Carl Edward (2006). Gaussian processes for machine learning. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press. xviii, 248 Seiten. ISBN: 9780262182539.
- Ulrich, Kyle R et al. (2015). "GP kernels for cross-spectrum analysis". In: Advances in neural information processing systems, pp. 1999–2007.
- Wilson, Andrew and Ryan Adams (2013). "Gaussian process kernels for pattern discovery and extrapolation". In: *Proceedings of the 30th International Conference on Machine Learning (ICML-13)*, pp. 1067–1075.
 - Wilson, Andrew Gordon, David A Knowles and Zoubin Ghahramani (2012). "Gaussian process regression networks". In: *Proceedings of the 29th International Coference on International Conference on Machine Learning*, pp. 1139–1146.

(日) (四) (三) (三) (三)

Feedback welcome!

The End

([†]CUHK, Shenzhen, [‡]RU, Nijmegen)

MTGP with Hierarchical Latent Interactions