Background

* Motivations

- Most blind unmixing networks are based on Autoencoder-like structure.
- Most network-based blind unmixing methods cannot guarantee to generate physically meaningful unmixing results due to the lack of effective guidance ${ }^{[1]}$.
- The performance of most unmixing networks with training guidance is limited by the quality of the guidance.
* Blind unmixing (BU) problem

$$
\begin{align*}
& \hat{E}, \hat{A}=\operatorname{argmin} \tag{1}\\
& E, A \\
& \quad \text { s.t. }
\end{align*} \| \geq 0, A \geq 0, A^{T} 1_{r}=1_{n}^{2}+R(A)
$$

Where,
$Y \in R^{p \times n}$ is the hyperspectral data cube;
$E \in R^{p \times r}$ is the endmember signature matrix;
$A \in R^{r \times n}$ is the abundance matrix;

- Goal of BU is to estimate E and A given Y.
* DIP techniques ${ }^{[2]}$
- Given an inverse problem

$$
x^{*}=\arg \min _{x}\left\|x-x_{0}\right\|_{2}^{2}+R(x)
$$

Where, x_{0} is noisy image, R is regulariser.

- DIP propose to solve the problem
$\theta^{*}=\operatorname{argmin}\left\|f_{\theta}(z)-x_{0}\right\|_{2}^{2}$
where $f_{\theta}(z)$ is a neural network parameterized by θ, with a random input z. After learning, network would output the restored image by $x^{*}=f_{\theta^{*}}(z)$. * Unmixing using DIP (UnDIP) ${ }^{[3]}$
- Existing method such as SiVM generate \tilde{E}, then (1) reduce to abundance estimation and can be solved via:

$$
\theta^{*}=\operatorname{argmin}_{\theta} \frac{1}{2}\left\|Y-\tilde{E} f_{\theta}(Z)\right\|_{F}^{2}
$$

The abundance would be given by $\hat{A}=f_{\theta^{*}}(Z)$.

Methods

* Endmember estimation via DIP (EDIP)
- Given an estimation of abundance $\tilde{A},(1)$ reduce to Endmember estimation problem, which can be solved using a DIP:

$$
\hat{\theta}_{E}=\arg \min _{\theta_{E}} \frac{1}{2}\left\|Y-f_{\theta_{E}}\left(z_{E}\right) \tilde{A}\right\|_{F}^{2}
$$

The endmember would be given by $\hat{E}=f_{\widehat{\theta}_{E}}\left(z_{E}\right)$.

* Abundance estimation via DIP (EDIP)
- Given an estimation of endmember \tilde{E}, (1) reduce to abundance estimation problem, which can be solved using a DIP:

$$
\hat{\theta}_{A}=\arg \min _{\theta_{A}} \frac{1}{2}\left\|Y-\tilde{E} f_{\theta_{A}}\left(z_{A}\right)\right\|_{F}^{2}
$$

The abundance would be given by $\hat{A}=f_{\widehat{\theta}_{A}}\left(z_{A}\right)$. * Overall structure

After obtaining \widehat{E} and \hat{A}, using EDIP and ADIP respectively, we can generate a reconstruction of HSI image as follows:

$$
\hat{Y}=\hat{E} \hat{A}
$$

Thus, the overall structure of the proposed network, named BUDDIP, is obtained by assembling EDIP and ADIP, as shown in Fig.1.

Fig. 1 BUDDIP

* We also propose a new composite loss function:

$$
L=\alpha_{1} L_{E D I P}+\alpha_{2} L_{A D I P}+\alpha_{3} L_{B U}
$$

where,

$$
\begin{gathered}
L_{E D I P}=\frac{1}{2}\left\|Y-f_{\theta_{E}}\left(z_{E}\right) \tilde{A}\right\|_{F}^{2} \\
L_{A D I P}=\frac{1}{2}\left\|Y-\tilde{E} f_{\theta_{A}}\left(z_{A}\right)\right\|_{F}^{2} \\
L_{B U}=\frac{1}{2}\|Y-\hat{Y}\|_{F}^{2}
\end{gathered}
$$

(\tilde{E}, \tilde{A}) is the guidance generated by existing methods such as $\mathrm{SiVM}+$ FCLS.

Results

* Experiment on synthetic data

- We use the procedure in [4] to generate a synthetic HSI image of size 100×100 pixels.
- We use default setting up

α_{1}	0.1
α_{2}	0.01
α_{3}	1.0
optimiser	ADAM
Learning rate	$1 \mathrm{e}-4$
Epoch	4500

[^0]$>$ Performance vs. SNR
We use default setting except SNR vary in $\{15,20,25,30$, inf $\} \mathrm{dB}$.

$>$ Performance vs. training size We use default setting except training size vary in $\{50 \times 50,100 \times 100,150 \times$ $150,200 \times 200\}$ pixels.

* Experiment on Real data

- We use the Jasper Ridge Dataset, and the default setting except $\alpha_{1}=\alpha_{2}=\alpha_{3}=1.0$ and epoch $=24000$.

[^0]: for Hyperspectral Unmixing," IGARSS 2019, Yokohama, Japan, 2019, pp. 2151-2 154.

