Symbol-Level Online Channel Tracking for Deep Receivers

ICASSP, May 2022

Ron Aharon Finish

Yoav Cohen

Tomer Raviv

Nir Shlezinger

Grow exponentially

Fast adaptation

Many varying channels

[1] V. Cisco, "Cisco visual networking index: Forecast and trends, 2017–2022," White Paper, vol. 1, 2018.

Detection Scenario

Detection Scenario

Machine-learning in Communications

Conventional versus physical layer application

Machine-learning in Communications

Problem Formulation

$$p_{\boldsymbol{Y}_{j}^{B}|\boldsymbol{S}_{j}^{B}}\left(\boldsymbol{y}_{j}^{B}|\boldsymbol{s}_{j}^{B}\right) = \prod_{i=1}^{B} p_{\boldsymbol{Y}_{i,j}|\bar{\boldsymbol{S}}_{i,j}}\left(\boldsymbol{y}_{i,j}|\bar{\boldsymbol{s}}_{i,j}\right)$$

$$\hat{s}_{j}^{B} : \mathcal{Y}^{B} \mapsto \mathcal{S}^{B}$$
 $\frac{1}{B} \sum_{i=1}^{B} \Pr\left(\hat{s}_{i,j}(\boldsymbol{Y}_{j}^{B}) \neq S_{i,j}\right)$

Maximum likelihood sequence detection with linear complexity

[2] A. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260–269, 1967.

Maximum likelihood sequence detection with linear complexity

But sensitive to inaccurate model knowledge!

[2] A. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260–269, 1967.

[3] N. Shlezinger et al. "ViterbiNet: A deep learning based Viterbi algorithm for symbol detection." *IEEE Transactions on Wireless Communications* (2020).

Pilots Transmission

Pilots Transmission

Channel Estimation

Pilots Transmission

Channel Estimation

Self Supervised Re-training

Dealing with Rapid Variations

Active Learning

[4] Settles, Burr. "Active learning literature survey." (2009).

Confidence Gap

Confidence Gap

Reliability Diversity

Symbol Diversity

Proposed Approach

Confidence Gap Reliability Diversity Symbol Diversity

Algorithm 1: Self-Supervised Active Learning	
Initialization: empty buffer Q	
Input : current detector φ_j	
received channel-block \boldsymbol{y}_{j}^{B}	
ℓ, u lower and upper percentiles	
Output : improved model φ_{j+1}	
1 Self-Supervised Active Learning $(\boldsymbol{\varphi}_j, \boldsymbol{y}_j^B, \ell, u)$	
2 $c_{i,j}(\bar{s}) \leftarrow \text{calculate by (3), } (\bar{s}, i) \in \mathcal{S} \times \mathcal{B};$	
3 $\hat{s}_{j}^{B} \leftarrow \text{calculate by (2);}$	
4 $g^B \leftarrow \text{calculate by (4)};$	
5 $P_{\ell}, P_u \leftarrow$ thresholds of confidence ℓ, u percentiles;	
6 for <i>i</i> in <i>B</i> do	
7 if $P_{\ell} \leq g_i \leq P_u$ then	
s add $(\boldsymbol{y}_{i,j}, \hat{s}_{i,j})$ to Q ;	
9 end	
10 $\varphi_{j+1} \leftarrow \text{train model } \varphi_j \text{ using data } \mathcal{Q};$	
11 return φ_{j+1}	

Results - Channel

Results - SER

Results - SER

[5] Raviv, Tomer, et al. "Meta-ViterbiNet: Online meta-learned Viterbi equalization for non-stationary channels." 2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE

Active learning Neural-based Receiver

Confidence Gap Reliability Diversity Symbol Diversity

Paper & github code in video description

[1] V. Cisco, "Cisco visual networking index: Forecast and trends, 2017–2022," White Paper, vol. 1, 2018.

[2] A. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260–269, 1967.

[3] N. Shlezinger et al. "ViterbiNet: A deep learning based Viterbi algorithm for symbol detection." *IEEE Transactions on Wireless Communications* (2020).

[4] Settles, Burr. "Active learning literature survey." (2009).

[5] Raviv, Tomer, et al. "Meta-ViterbiNet: Online meta-learned Viterbi equalization for non-stationary channels." 2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE