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Fig.1 HSI unmixing Problem

v HSI linear unmixing model
𝑌 = 𝐸𝐴 + 𝑁

where,

(𝑌, 𝐸, 𝐴) is (HSI reflectance spectrum, material reflectance /endmember signature matrix, abundance matrix);

𝑁 is generally additive Gaussian noise;

v Goal
Given 𝑌, estimate 𝐴 and 𝐸.

*𝐸, +𝐴 = 𝑎𝑟𝑔min
",$

1
2
𝑌 − 𝐸𝐴 %

& + 𝑅 𝐴
𝑠. 𝑡. , 𝐸 ≥ 0, 𝐴 ≥ 0, 𝐴'1( = 1)

v Previous methods
Ø Most network based blind unmixing methods cannot guarantee to generate physically meaningful unmixing results 

due to the lack of effective guidance[1].

Ø The performance of most unmixing networks with training guidance is limited by the quality of the guidance.

v Motivation
Ø Can we propose a new network that can surpass the performance limitation imposed by training guidance?

(1)

[1] D. Hong et al., "Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing," in IEEE Transactions on Neural Networks and Learning Systems, doi: 
10.1109/TNNLS.2021.3082289. 
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Unmixing using Deep Image Prior (UnDIP)
vDIP[2]

Ø Problem setting
Consider the image inverse problem, such as denoising, given by:

𝑥∗ = argmin
"

𝑥 − 𝑥# $
$ + 𝑅(𝑥) (1)

where,
𝑥# is the noisy image;
𝑅 is a regularizer on 𝑥.
Ø DIP technique
DIP propose to solve it by:

𝜃∗ = argmin
"

𝑓% 𝑧 − 𝑥# $
$ (2)

where, 
𝑓% 𝑧 is a neural network parameterized by 𝜃 with a random input 𝑧.
Ø Note
vAfter learning, the network 𝑓! can replace the regularizer 𝑅.
vThe restored image is given by 𝑥∗ = 𝑓!∗ 𝑧 .

[2] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, “Deep image prior,” International Journal of Computer Vision, vol. 128, no. 7, pp. 1867–1888, Mar 2020. 



Unmixing using Deep Image Prior (UnDIP)

vUnDIP[3]

Suppose some existing methods give !𝐸, 

[3] Rasti, B., Koirala, B., Scheunders, P., & Ghamisi, P. (2021). UnDIP: Hyperspectral Unmixing Using Deep Image Prior. IEEE Transactions on Geoscience and Remote Sensing, 1–15. 
https://doi.org/10.1109/TGRS.2021.3067802

*𝐸, +𝐴

= argmin*,+
1
2
𝑌 − 𝐸𝐴 %

& + 𝑅 𝐴 (3)
𝑠. 𝑡. , 𝐸 ≥ 0, 𝐴 ≥ 0, 𝐴'1( = 1)

+𝐴 = argmin+
1
2
𝑌 − ?𝐸𝐴 %

&
+ 𝑅 𝐴 (4)

𝑠. 𝑡. , 𝐴 ≥ 0, 𝐴'1( = 1)

𝜃∗ = argmin-
1
2
𝑌 − ?𝐸𝑓. 𝑧

%
&

5
+𝐴 = 𝑓.∗ 𝑧

given 4𝐸

DIP

Cons:
• No E itself;
• Limited by 6𝑬.
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v Endmember estimation via EDIP
Like UnDIP, suppose an estimation of abundance &𝐴 is given by existing methods, then (1) would reduce 

to endmember estimation problem:

(𝐸 = 𝑎𝑟𝑔min
#

1
2
𝑌 − 𝐸 &𝐴 $

%

𝑠. 𝑡. , 𝐸 ≥ 0
According to DIP technique, we propose to solve it via

:𝜃# = min
!"

1
2
𝑌 − 𝑓!" 𝑧# &𝐴

$
%

Where, 𝑓!" 𝑧# is the network with learnable parameters 𝜃# and random input 𝑧#。

Ø Last layer of 𝑓!" is sigmoid to impose 𝐸 ≥ 0.

Ø Endmember given by (𝐸 = 𝑓&!" 𝑧# .



v Abundance estimation via EDIP
Similarly, suppose an estimation of endmember <𝐸 is given by existing methods, then (1) would reduce 

to abundance estimation problem:

:𝐴 = 𝑎𝑟𝑔min
#

1
2
𝑌 − <𝐸𝐴 $

%

𝑠. 𝑡. , 𝐴 ≥ 0, 𝐴'1( = 1)
According to DIP technique, we propose to solve it via

:𝜃* = min
!#

1
2
𝑌 − <𝐸𝑓!# 𝑧* $

%

Where,𝑓!# 𝑧* is the network with learnable parameters 𝜃* and random input 𝑧*。

Ø Last layer of 𝑓!# is softmax to impose 𝐴 ≥ 0, 𝐴'1( = 1).

Ø Abundance given by :𝐴 = 𝑓&!# 𝑧* .



v Unmixing using Double DIP (BUDDIP)

𝑧&
EDIP
𝑓%!

8𝐸

1
2
𝑌 − *𝐸 E𝐴

%
&

𝑧'
ADIP
𝑓%"

9𝐴

1
2
𝑌 − ?𝐸 +𝐴

%
&

can estimate E now;
but still limited by 4𝐸, <𝐴 .

Ø EDIP + ADIP



v Unmixing using Double DIP (BUDDIP)

Ø EDIP + ADIP

𝑧&
EDIP
𝑓%!

8𝐸

1
2
𝑌 − *𝐸 E𝐴

%
&

𝑧'
ADIP
𝑓%"

9𝐴

1
2
𝑌 − ?𝐸 +𝐴

%
&

ü We also propose the third loss:
Blind unmixing loss: 𝐿$% =

&
' 𝑌 − %𝑌 (

'

ü Final loss
𝐿 = 𝛼&𝐿)*+, + 𝛼'𝐿-*+, + 𝛼.𝐿$%

ü New interpretation
Based on the guidance ( )𝐸, ,𝐴), find a 
better solution.

8𝑌 1
2
𝑌 − *𝑌

%
&
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Experiment on Synthetic Data
data generate according to [4].

competitors UnDIP[3];
SiVM[5]+FCLS[6].

metrics for endmember average Spectral Angle Distance (aSAD)

𝑎𝑆𝐴𝐷 𝐸, %𝐸 =
1
𝑟4/0&

1 180
𝜋 cos2& 𝑒/, �̂�/

metrics for abundance average Root mean square error (aRMSE)

𝑎𝑅𝑀𝑆𝐸 𝐴, ?𝐴 =
1
𝑛
4

/0&

3 1
𝑟
𝑎/ − A𝑎/ '

'

optimizer ADAM

Learning rate 1e-4

epochs 4500

hyper-parameters 𝛼& = 0.1, 𝛼' = 0.01, 𝛼. = 1.0
[4] S. Jia and Y. Qian, “Constrained nonnegative matrix factorization for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161–173,  Jan. 2009.
[5] Rob Heylen, Dzˇevdet Burazerovic, and Paul Scheun- ders, “Fully constrained least squares spectral unmix- ing by simplex projection,” IEEE Transactions on Geo- science and Remote Sensing, vol. 49, no. 11, pp. 
4112– 4122, 2011. 
[6] D. C. Heinz and Chein-I-Chang, “Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery,” IEEE Transactions on Geoscience and Remote 
Sensing, vol. 39, no. 3, pp. 529–545, 2001. 



Performance vs. SNR

We use default setting except SNR vary in 15,20,25,30, 𝑖𝑛𝑓 dB.



Performance vs. HSI image size

We use default setting except training size vary in {50×50,100×100,150×150,200×200} pixels.



Experiment Real Data

Jasper Ridge[1]

term value

pixels 100 x 100

channels 198

endmembers Road, Soil, Water, Tree

[1] F. Zhu, Y. Wang, S. Xiang, B. Fan, and C. Pan, “Structured Sparse Method for Hyperspectral Unmixing,” ISPRS J. Photogrammetry Remote Sens., vol. 88, pp. 101–118, 2014. 



Performance: Endmember estimation

We use default setting except 𝛼( = 𝛼$ = 𝛼) = 1.0 and epoch=24000.

SiVM

UnDIP

BUDDIP

Solid blue line is true value, while dot line is estimated value. 

SiVM
+FCLS

UnDIP BUDDIP

aSAD 11.349 11.349 6.8489



Performance: Abundance estimation

We use default setting except 𝛼( = 𝛼$ = 𝛼) = 1.0 and epoch=24000.

SiVM
+FCLS

UnDIP BUDDIP

aRMSE 0.1480 0.1748 0.1023

SiVM+FCLS.       UnDIP.            BUDDIP.          reference.




