

BLIND UNMIXING USING A DOUBLE DEEP IMAGE PRIOR

Paper ID: 4390

Chao Zhou(University College London) Miguel R.D. Rodrigues (University College London)

✤ HSI linear unmixing model

Y = EA + N

where,

(Y, E, A) is (HSI reflectance spectrum, material reflectance /endmember signature matrix, abundance matrix);

N is generally additive Gaussian noise;

✤ Goal

Given *Y*, estimate *A* and *E*.

$$\hat{E}, \hat{A} = \arg\min_{E,A} \frac{1}{2} \|Y - EA\|_{F}^{2} + R(A)$$

s.t., $E \ge 0, A \ge 0, A^{T} \mathbf{1}_{r} = \mathbf{1}_{n}$

Previous methods

- Most network based blind unmixing methods cannot guarantee to generate physically meaningful unmixing results due to the lack of effective guidance^[1].
- > The performance of most unmixing networks with training guidance is limited by the quality of the guidance.
- ✤ Motivation
- Can we propose a new network that can surpass the performance limitation imposed by training guidance?

[1] D. Hong et al., "Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing," in IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2021.3082289.

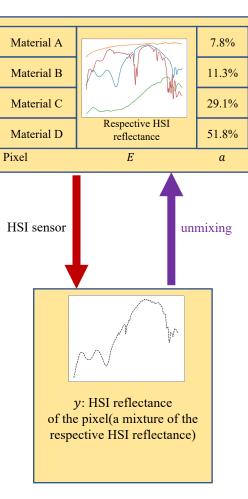


Fig.1 HSI unmixing Problem

(1)

Unmixing using Deep Image Prior (UnDIP) ***** DIP^[2]

Problem setting

Consider the image inverse problem, such as denoising, given by:

$$x^* = \underset{x}{\operatorname{argmin}} \|x - x_0\|_2^2 + R(x) \quad (1)$$

where,

 x_0 is the noisy image;

R is a regularizer on x.

> <u>DIP technique</u>

DIP propose to solve it by:

$$\theta^* = \underset{x}{\operatorname{argmin}} \|f_{\theta}(z) - x_0\|_2^2 \quad (2)$$

where,

 $f_{\theta}(z)$ is a neural network parameterized by θ with a random input z.

≻ <u>Note</u>

♣After learning, the network f_{θ} can replace the regularizer R.
♣The restored image is given by $x^* = f_{\theta^*}(z)$.

[2] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, "Deep image prior," International Journal of Computer Vision, vol. 128, no. 7, pp. 1867–1888, Mar 2020.

✤ UnDIP^[3]

Unmixing using Deep Image Prior (UnDIP)

Suppose some existing methods give \vec{E} ,

- Cons:
- No E itself;
- Limited by \widehat{E} .

given \tilde{E} \widehat{E} , \widehat{A} $\hat{A} = \operatorname{argmin}_{A} \frac{1}{2} \| Y - \tilde{E}A \|_{F}^{2} + R(A)$ (4) $= \overline{\operatorname{argmin}_{E,A} \frac{1}{2} \|Y - EA\|_F^2 + R(A)}$ (3) $s.t.A \ge 0, A^T 1_r = 1_n$ $s.t., E \ge 0, A \ge 0, A^T \mathbf{1}_r = \mathbf{1}_n$ DIP $\theta^* = \operatorname{argmin}_{\theta} \frac{1}{2} \left\| Y - \tilde{E} f_{\theta}(z) \right\|_{F}^{2}$ (5) $\hat{A} = f_{A^*}(z)$ Fig. 2. Proposed convolutional network architecture with one skip connection. This network is used as f_{θ} for UnDIP in the experiments. Different layers in the network are shown with specific colors.

[3] Rasti, B., Koirala, B., Scheunders, P., & Ghamisi, P. (2021). UnDIP: Hyperspectral Unmixing Using Deep Image Prior. *IEEE Transactions on Geoscience and Remote Sensing*, 1–15. https://doi.org/10.1109/TGRS.2021.3067802

Endmember estimation via EDIP

Like UnDIP, suppose an estimation of abundance \tilde{A} is given by existing methods, then (1) would reduce to endmember estimation problem:

$$\hat{E} = \arg\min_{E} \frac{1}{2} \left\| Y - E\tilde{A} \right\|_{F}^{2}$$

s.t., $E \ge 0$

According to DIP technique, we propose to solve it via

$$\hat{\theta}_E = \min_{\theta_E} \frac{1}{2} \left\| Y - f_{\theta_E}(z_E) \tilde{A} \right\|_F^2$$

Where, $f_{\theta_E}(z_E)$ is the network with learnable parameters θ_E and random input z_E \circ

- ▶ Last layer of f_{θ_E} is sigmoid to impose $E \ge 0$.
- > Endmember given by $\hat{E} = f_{\hat{\theta}_E}(z_E)$.

Abundance estimation via EDIP

Similarly, suppose an estimation of endmember \tilde{E} is given by existing methods, then (1) would reduce to abundance estimation problem:

$$\hat{A} = \arg\min_{E} \frac{1}{2} \left\| Y - \tilde{E}A \right\|_{F}^{2}$$

s.t., $A \ge 0, A^{T} \mathbf{1}_{F} = \mathbf{1}_{n}$

According to DIP technique, we propose to solve it via

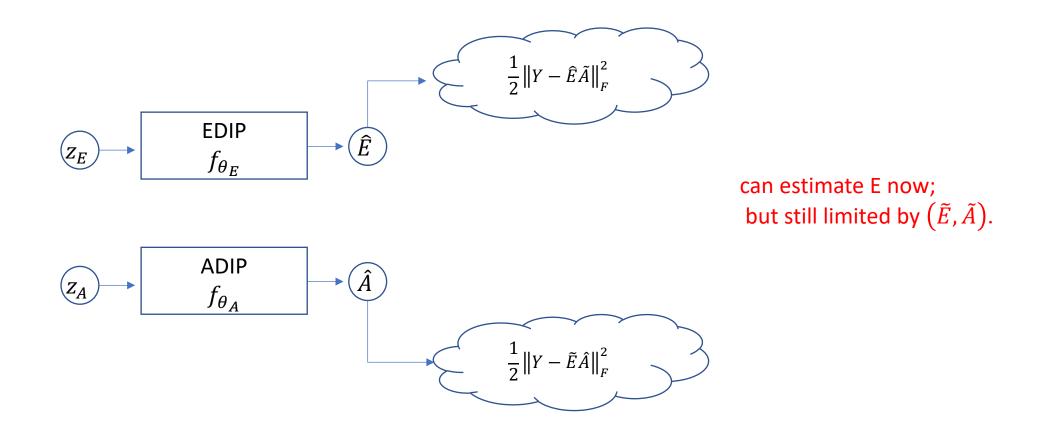
$$\hat{\theta}_A = \min_{\theta_A} \frac{1}{2} \left\| Y - \tilde{E} f_{\theta_A}(z_A) \right\|_F^2$$

Where, $f_{\theta_A}(z_A)$ is the network with learnable parameters θ_A and random input $z_{A\circ}$

- ► Last layer of f_{θ_A} is softmax to impose $A \ge 0$, $A^T \mathbf{1}_r = \mathbf{1}_n$.
- → Abundance given by $\hat{A} = f_{\hat{\theta}_A}(z_A)$.

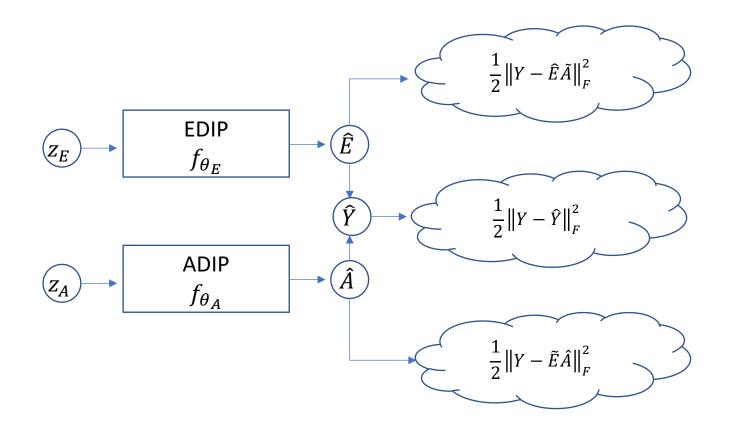
Unmixing using Double DIP (BUDDIP)

EDIP + ADIP



Unmixing using Double DIP (BUDDIP)

EDIP + ADIP



✓ We also propose the third loss: Blind unmixing loss: $L_{BU} = \frac{1}{2} \|Y - \hat{Y}\|_{F}^{2}$

✓ Final loss $L = \alpha_1 L_{EDIP} + \alpha_2 L_{ADIP} + \alpha_3 L_{BU}$

✓ New interpretation Based on the guidance (\tilde{E}, \tilde{A}) , find a better solution.

Experiment on Synthetic Data

data	generate according to [4].		
competitors	UnDIP ^[3] ; SiVM ^[5] +FCLS ^[6] .		
metrics for endmember	average Spectral Angle Distance (aSAD) $aSAD(E, \hat{E}) = \frac{1}{r} \sum_{i=1}^{r} \frac{180}{\pi} \cos^{-1}(e_i, \hat{e}_i)$		
metrics for abundance	average Root mean square error (aRMSE) $aRMSE(A, \hat{A}) = \frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{1}{r} a_i - \hat{a}_i _2^2}$		
optimizer	ADAM		
Learning rate	1e-4		
epochs	4500		
hyper-parameters	$\alpha_1 = 0.1, \alpha_2 = 0.01, \alpha_3 = 1.0$		

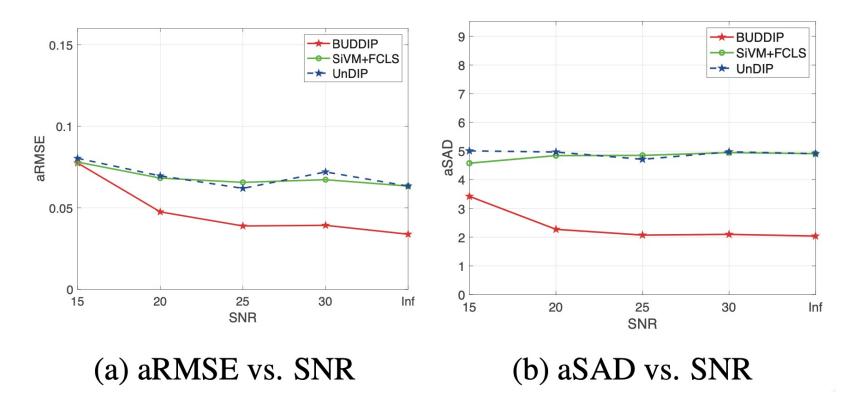
[4] S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161–173, Jan. 2009.

[5] Rob Heylen, Dz^{*}evdet Burazerovic, and Paul Scheun- ders, "Fully constrained least squares spectral unmix- ing by simplex projection," *IEEE Transactions on Geo- science and Remote Sensing*, vol. 49, no. 11, pp. 4112–4122, 2011.

[6] D. C. Heinz and Chein-I-Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 3, pp. 529–545, 2001.

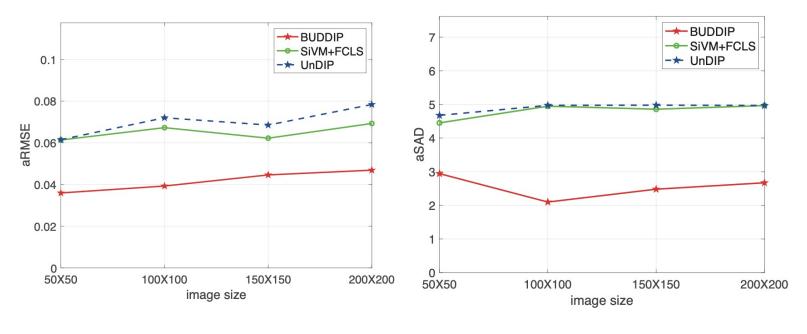
Performance vs. SNR

We use default setting except SNR vary in [15,20,25,30, *inf*] dB.



Performance vs. HSI image size

We use default setting except training size vary in $\{50 \times 50, 100 \times 100, 150 \times 150, 200 \times 200\}$ pixels.



(a) aRMSE vs. image size

(b) aSAD vs. image size

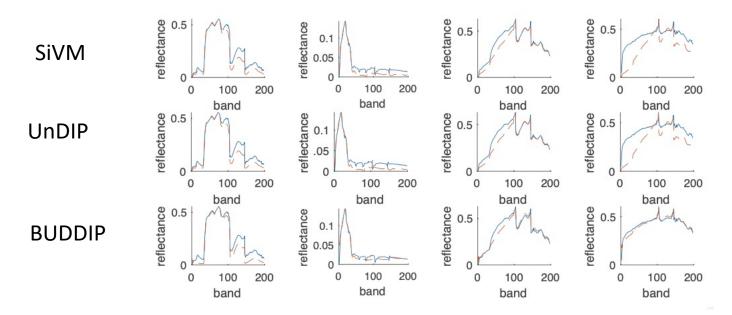
Experiment Real Data

Jasper Ridge^[1]

term	value
pixels	100 x 100
channels	198
endmembers	Road, Soil, Water, Tree

Performance: Endmember estimation

We use default setting except $\alpha_1 = \alpha_2 = \alpha_3 = 1.0$ and epoch=24000.

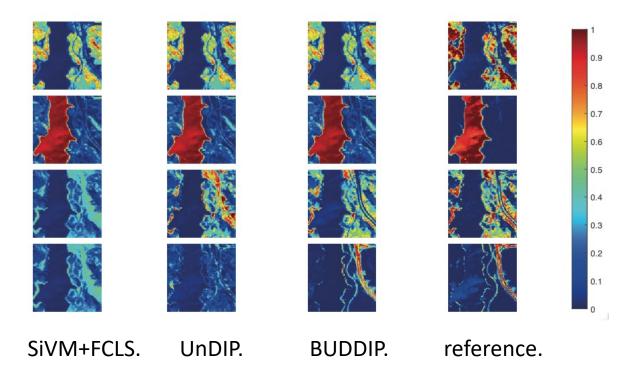


	SiVM +FCLS	UnDIP	BUDDIP
aSAD	11.349	11.349	6.8489

Solid blue line is true value, while dot line is estimated value.

Performance: Abundance estimation

We use default setting except $\alpha_1 = \alpha_2 = \alpha_3 = 1.0$ and epoch=24000.



	SiVM +FCLS	UnDIP	BUDDIP
aRMSE	0.1480	0.1748	0.1023

