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*¢* HSI linear unmixing model

Material A /JNA 7.8%
Y=EA+N
( 1) Material B 11.3%
where, .
Material C 29.1%
(Y,E, A) is (HSI reflectance spectrum, material reflectance /fendmember signature matrix, abundance matrix); Materi Respective HSI
aterial D reflectance 51.8%
N is generally additive Gaussian noise; Pixel E a
\/
% Goal
HSI sensor unmixing

Given Y, estimate A and E.

~a 1
E, A= argr]rslani IY — EA||%Z + R(A)
s.t.,E>0A4>0A4"T1, =1,

** Previous methods

» Most network based blind unmixing methods cannot guarantee to generate physically meaningful unmixing results

y: HSI reflectance
due to the lack of effective guidancefll, of the pixel(a mixture of the

respective HSI reflectance)
» The performance of most unmixing networks with training guidance is limited by the quality of the guidance.

** Motivation

Fig.1 HSI unmixing Problem

» Can we propose a new network that can surpass the performance limitation imposed by training guidance?

[1] D. Hong et al., "Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing," in IEEE Transactions on Neural Networks and Learning Systems, doi:
10.1109/TNNLS.2021.3082289.
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Unmixing using Deep Image Prior (UnDIP)
% DIP(2]

» Problem setting
Consider the image inverse problem, such as denoising, given by:

x* = argmin||x — x,||5 + R(x) (1)

X

where,

Xg is the noisy image;

R is a regularizer on x.

» DIP technique

DIP propose to solve it by:

0" = argmin|lfy(2) — x0ll7  (2)

X
where,
fo(2) is a neural network parameterized by 6 with a random input z.
» Note

s»After learning, the network fg can replace the regularizer R.
“»*The restored image is given by x* = fg+(2).

[2] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, “Deep image prior,” International Journal of Computer Vision, vol. 128, no. 7, pp. 1867-1888, Mar 2020.
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Unmixing using Deep Image Prior (UnDIP) Cons:
* No E itself;

* Limited by E.

% UnDIPE]
Suppose some existing methods give E,

A= argminA%”Y — E"A”i + R(4)

s.t.,A=0A4T1, =1,

)

1
= argminE,AEIIY —EA|l +R(A)  (3)
s.t,E>0,A>04"1, =1,

DIP
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Fig. 2. Proposed convolutional network architecture with one skip connection. This network is used as fy for UnDIP in the experiments. Different layers
in the network are shown with specific colors.

* : 1 I 2
0" = argming E”Y —Efy (z)”F

A = fo+(2)

[3] Rasti, B., Koirala, B., Scheunders, P., & Ghamisi, P. (2021). UnDIP: Hyperspectral Unmixing Using Deep Image Prior. IEEE Transactions on Geoscience and Remote Sensing, 1-15.
https://doi.org/10.1109/TGRS.2021.3067802
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** Endmember estimation via EDIP

Like UnDIP, suppose an estimation of abundance 4 is given by existing methods, then (1) would reduce
to endmember estimation problem:
E= a’rgminEHY — Ef'lv”2
E 2 F

s.t.,E=0
According to DIP technique, we propose to solve it via

A 1 112
HE = Héglz ||Y — ng(ZE)A”F
Where, fy..(zg) is the network with learnable parameters 8 and random input zg .

»> Last layer of fp, is sigmoid to impose E = 0.

> Endmember given by E = fa,(28).
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** Abundance estimation via EDIP
Similarly, suppose an estimation of endmember E is given by existing methods, then (1) would reduce
to abundance estimation problem:
R 1 ~ 12
A= argmb;ni ||Y — EA||F
s.t.,,A>0A4T1, =1,
According to DIP technique, we propose to solve it via

N T 2
0, = min |y — EfGA(ZA)”F

Where,fyg,(z4) is the network with learnable parameters 84 and random input z,4,

> Last layer of fp, is softmax to impose 4 = 0, AT1,. =1,

> Abundance given by A = fa,(za).
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** Unmixing using Double DIP (BUDDIP)

e

ADIP
fo, —>

> EDIP + ADIP

EDIP
@H for

can estimate E now;
but still limited by (E, 4).

?
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** Unmixing using Double DIP (BUDDIP)

» EDIP + ADIP

(s)

?

EDIP
fog

ADIP
fo,

v" We also propose the third loss:

Blind unmixing loss: Lgy = %”Y — ?”12,

v" Final loss
L = aiLgpip + ayLypip + as3lpy

v" New interpretation
Based on the guidance (E, 4), find a
better solution.



Scngapore ﬁ

Motivation

Previous work

Proposed algorithm

Results

0P e




@ussp 2022
Scugapore

Experiment on Synthetic Data

data generate according to [4].
competitors UnDIPE3!;
SiVMUPI+FCLSIel,
metrics for endmember average Spectral Angle Distance (aSAD)
A 1" 180 | A
aSAD(E,E) = —Z ——cos™ (e, €;)
r i=1 T
metrics for abundance average Root mean square error (aRMSE)
. 1o 1 O

aRMSE (4, A) = —z —|la; — a;ll3
optimizer ADAM
Learning rate le-4
epochs 4500
hyper-parameters a, =0.1,a, =0.01,a3 = 1.0

[4] S. Jia and Y. Qian, “Constrained nonnegative matrix factorization for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.

[5] Rob Heylen, Dz evdet Burazerovic, and Paul Scheun- ders, “Fully constrained least squares spectral unmix- ing by simplex projection,” IEEE Transactions on Geo- science and Remote Sensing, vol. 49, no. 11, pp.
4112-4122,2011.

[6] D. C. Heinz and Chein-I-Chang, “Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 39, no. 3, pp. 529-545, 2001.
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Performance vs. SNR

We use default setting except SNR vary in [15,20,25,30, inf] dB.
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(a) aRMSE vs. SNR (b) aSAD vs. SNR
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Performance vs. HSI image size

We use default setting except training size vary in {50x50,100%x100,150%x150,200x200} pixels.

' —+—BUDDIP
—~—BUDDIP 7t _ |
—o—SIVM+FCLS s ERCES
01 r —* UnDIP | " —* UnDIP

0 ' ' 0 ‘ '
50X50 100X100 - 150X150 200X200 50X50 100X100 150X150 200X200
image size image size

(a) aRMSE vs. image size (b) aSAD vs. image size
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Experiment Real Data

Jasper Ridge!!

pixels 100 x 100
channels 198
endmembers Road, Soil, Water, Tree

[1] F. Zhu, Y. Wang, S. Xiang, B. Fan, and C. Pan, “Structured Sparse Method for Hyperspectral Unmixing,” ISPRS J. Photogrammetry Remote Sens., vol. 88, pp. 101-118, 2014.
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Performance: Endmember estimation

We use default setting except a; = a, = a3z = 1.0 and epoch=24000.
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Solid blue line is true value, while dot line is estimated value.
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Performance: Abundance estimation

We use default setting except a; = a, = a3z = 1.0 and epoch=24000.

SiVM BUDDIP
+FCLS

aRMSE  0.1480 0.1748 0.1023

SiVM+FCLS. UnDIP. BUDDIP. reference.






