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1. Introduction
Scugapone

* Image compression is a fundamental technology in signal processing and computer vision.

* Inrecent years, many learning-based image compression methods have achieved state-of-the-art
performance comparing to traditional image codecs.

 However, there are still some challenges for its practical deployment:

» Bit-rate and reconstruction quality are fixed for a single trained model
with a predefined trade-off factor.

» Computational cost in learning-based compression models is relatively
high due to their complex network architectures.

To deal with such situation and corresponding challenges of learning-based image compression, this paper
proposes a universal variable-rate efficient method for neural image compression.
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2. Method

Overall Framework
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Two novel modules are purposed——Energy-based
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Image §§‘ ) channel gating module(ECG) and Bit-rate modulator(BM).
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2. Method

Energy-based channel gating
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learnable parameter o * Inputs of different intensities cause
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different influence on the results -
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3. Experiments
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We use ScaleHyperprior model as an example to show the implementation details and optimization strategies
of our method.

Distortion: mean square error measured on the test set
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3. Experiments ﬁi?
Quality

Model Performance 1 > 3 7} 5 6 7 g
ScaleHyperprior PSNR drop(%) 0 0.346 | 0.228 | 0.269 | 0.336 0 0 0.216
FLOP reduction | 2.54x | 2.86x | 2.60x | 2.54x | 2.54x | 2.07x | 2.14x | 2.03x
MeanscaleHyperprior PSNR drop(%) 0.39 0.22 0.77 0.69 0.37 0.61 0.71 0.78
FLOP reduction | 2.34x | 2.50x | 2.56 x | 2.68x | 2.33x | 2.12x | 2.12x | 2.24x
JointAutoregressive PSNR drop(%) | 0.207 | 0.335 | 0.437 | 0.807 | 0.465 | 0.150 | 0.354 | 0.553
FLOP reduction | 2.43x | 2.67x | 248x | 2.23x | 2.29x | 2.02x | 2.06x | 2.02x

For model with ECG: We can see that the FLOP reduction of more than 2x can be achieved in three neural image
compression models with very slight PSNR degradation around 0.5% and no more than 1%
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For efficient models: Comparable
performance to original models.
Sparsity around 0.5 in convolution
operations
Storage saving of 80.42%,82.04%
and 83.07% respectively.
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Thank you!

Harbin Institute of Technology, Shenzhen & PengCheng Laboratory
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