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Motivation

Motivation

Tracking of dyanmic systems is encountered in many applications:
Localization
Navigation
Task Planning

such settings can often be represented as smoothing tasks, which are
typically tackled using either a Model-Based(MB) or a Data-Driven(DD)
method.
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Motivation

Model-based Deep Learning

In this work we aim to design a hybrid MB DD smoother.

Figure: DNN-aided inference illustration1

Key idea: replace part of the MB computation by NN, in order to incor-
porate the advantages of both domains.
1Nir Shlezinger et al. “Model-Based Deep Learning”. In: arXiv preprint arXiv:2012.08405
(2020)
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Agenda

Agenda

Smoothing Problem Formulation

RTSNet Architecture

Experiments on Linear and Non-linear Cases
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Smoothing Problem Formulation

Smoothing Problem Formulation

Consider fixed-interval smoothing: the recovery of a state block {xt}Tt=1
given a block of noisy observations {yt}Tt=1 for a fixed length T .
The state and the observations are related via a dynamical system rep-
resented by

xt = f (xt−1) + et , et ∼ N (0,Q) , xt ∈ Rm, (1a)
yt = h (xt ) + vt , vt ∼ N (0,R) , yt ∈ Rn. (1b)
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Smoothing Problem Formulation

Traditional Model-Based Solution

Linear case:
Rauch-Tung-Striebel (RTS) Smoother achieves the optimal MMSE for
linear State Space model

Non-linear case:
Extended RTS smoother
- Subject to Linearization error
Particle smoother
- performance is unstable and hard to quantify
- computation complexity increases dramatically with the number
of particles

These drawbacks motivate deriving a NN-aided Kalman Smoother.
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Smoothing Problem Formulation

RTS Smoother Review

The MB RTS Smoother recovers the latent state variables using the
forward and backward passes.

The forward pass is a standard Kalman Filter (KF), Where Kt is the
forward Kalman Gain (KG):

Kt = Σ̂t |t−1 · Ĥ
> · Ŝ−1

t . (2)

On the other hand, the backward KG Gt is given by,

Gt = Σ̂t |t · F̂> · Σ̂−1
t+1|t . (3)

all domain knowledge encapsulated in KGs.
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RTSNet Architecture

RTSNet Architecture
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(b) Backward pass.

Choose RTS as Backbone: all domain
knowledge encapsulated in KGs.

Kt = Σ̂t |t−1 · Ĥ
> · Ŝ−1

t . (4)

Gt = Σ̂t |t · F̂
> · Σ̂−1

t+1|t . (5)

Replace forward KG (4) and backward
KG (5) with NNs, where Low- com-
plexity NN consists of an input FC, a
two-layer GRU and an output FC layer.
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RTSNet Architecture

Architecture Discussion
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(b) Backward pass.

NN-aided KGs compensate for model
mismatch
Avoid linearization and is less sensi-
tive to non-linearities
Not require inverting matrices while
inferring rapidly with low computation
complexity due to efficient RNNs
Utilize a single learned forward-
backward pass, which can be ex-
tended to carry out multiple passes via
deep unfolding
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Experiments

Linear Model

For Linear State-space Model with Gaussian noise, RTS smoother
is optimal.
Synthetic linear dataset: set F and H to take the controllable canon-
ical and inverse canonical forms, respectively.

Our RTSNet converges to the optimal RTS smoother.
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Experiments

Linear - Model Mismatch

Rotate observation matrix H by 10◦.
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Similar results can be achieved when rotate F.
RTSNet is superior to RTS smoother for model mismatch.
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Experiments

Linear - Generalization

Scale SS model F & H to 10x10
Scale Ttest to 1000

Figure: Training trajectory length 20, testing trajectory length 1000

KF RTS RTSNet
MSE Loss [dB] -1.9271 -3.7917 -3.7658
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Experiments

Lorenz Attractor - Sampling and decimation

Evaluate RTSNet on long trajectories (T = 3000) with mismatches due
to sampling a continuous-time process into discrete-time.

Compare with DD Benchmark: Similar MSE performance, much better
training time and inference time.

Table: Sampling and decimation.

Model MB KS Benchmark2 RTSNet
mean-squared error (MSE) [dB] −10.071 −15.346 −15.56

Inference time [sec] 9.93 30.5 5.007
Training time [hours/epoch] N/A 0.4 0.16

Number of trainable parameters N/A 41, 236 33, 270

2Victor Garcia Satorras, Zeynep Akata, and Max Welling. “Combining Generative and
Discriminative Models for Hybrid Inference”. In: Advances in Neural Information Pro-
cessing Systems. 2019, pp. 13802–13812
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Experiments

Lorenz Attractor - Sampling and decimation -
Trajectories

True (Decimated) Noisy Observation

RTSNet Benchmark

Extended Kalman
 Smoother

Figure: Lorenz attractor with sampling mismatch, T = 3000.
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Experiments

Lorenz Attractor - Model Mismatch
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Future Work

Future Work

1 Evaluate RTSNet on real-world data-set, e.g, NCLT.

2 Extend the network to handle jumps in the hidden state and to de-
tect outlier observations, possibly using NUV priors.

3 Try fixed-lag smoothing with sliding window. (Although fix-lag can
face computation inefficiency problem, it is sometimes of more prac-
tical use.)

4 Enable RTSNet to face asynchronous mearsurement update.
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Links

Check Us

Check us on Arxiv Check us on GitHub
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