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e We propose a deep learning based framework called || « The light space (the upper S * Our method ranks best with an average MAE of 7.89
Lighting  Estimation and  Relighting  for | hemisphere) is characterized %o 11, and a standard deviation of 0.24 units for surface
Photometric Stereo (LERPS) designed to jointly by azimuthal angle: & € SEL T normal estimation over the DiLiGenT benchmark
perform the following tasks. (0°,180°] and elevation angle: dataset. o
(a) Lighting estimation 0 e (—90°,90°) « On an average, the relit images have over 95%
(b) Image relighting . We divid’e th.e ight space structural similarity with the desired target images.

(C) Per-pixe| surface normal estimation into Kd — 36 bins.  LERPS CaptureS and dlsentangles the glObal |Ightlng—

iIndependent and the local lighting-specific features of

e During training, the network uses multiple differently lit
Local lighting features Ly the object.

Images of an object one at a time.
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Fig. 1 Detailed architecture of LERPS framework.
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