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Automatic song writing (ASW)  

• lyrics-to-lyrics generation (L2L)

• melody-to-melody generation (M2M)

• lyric-to-melody generation (L2M) 

• melody-to-lyric generation (M2L)

This work proposes:

• A unified framework for all ASW tasks

• A objective metric with regard to original musical pieces 

Introduction

2

ModelMIDI 𝑋 MIDI ෠𝑋

ModelLyric 𝑌 Lyric ෠𝑌

ModelLyric 𝑌 MIDI ෠𝑋

ModelMIDI 𝑋 Lyric ෠𝑌

Model
MIDI 𝑋

or

Lyric 𝑌

MIDI ෠𝑋
or

Lyric ෠𝑌



Main challenges: 

1) paired data scarcity 

2) weak correlation between melody and lyrics

3) lack of suitable evaluation metrics 
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Main challenges: 

1) paired data scarcity 

→ Leveraging rich unpaired data 

2) weak correlation between melody and lyrics

→ Proposing a dual transformation loss

3) lack of suitable evaluation metrics 

→ Proposing a new evaluation criteria

Challenges
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• Pre-training with unpaired data ( L2L, M2M)

• Fine-tuning with paired data ( L2M, M2L)

Framework Overview
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Pre-training with unpaired data

• task-specific pre-training: various domain music data

• domain-specific pre-training: pop music to reduce domain gaps

Methodology

T = (𝑡1, 𝑡2, … , 𝑡𝑁) , 𝑇 ∈ {𝑋, 𝑌}𝐿(T; 𝜃) = ෍

𝑛=1

|𝑇|

𝑝(𝑡𝑛|𝑡<𝑛; 𝜃)
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Pre-training

Auto-regressive training

MIDI files are tokenized to REMI[1] representation

[1]Huang Y S, Yang Y H. Pop music transformer: Beat-based modeling and generation of expressive pop piano compositions 

[C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 1180-1188.

𝜃 and 𝑇 represent parameters of model and sequence of lyric or melody.



Fine-tuning with paired data

• Standard Seq2Seq framework for cross domain generation tasks (L2M,M2L) 

• Dual  Transformation  Loss

• Strengthen the correlation between lyric and melody

Methodology
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Dual transformation loss

𝑡 ො𝑎𝑟, 𝑠𝑟𝑐 ∈ { ෠𝑋, 𝑌 , ( ෠𝑌, 𝑋)}
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• The pitch distribution similarity (PD): average Overlapped Area (OA) between 
two distributions (normalized frequency histogram) of pitches in melodies.

Metric - HPD
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• The pitch distribution similarity (PD): average Overlapped Area (OA) between 
two distributions (normalized frequency histogram) of pitches in melodies.

Metric - HPD
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• Soft pitch distribution similarity (SPD): improve HPD for variable-length 
melodies comparison and focus variation between adjacent pitches according to 
chromatic rule rather than pitch.

Metric - SPD
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…
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Experiment

• Dataset

• data acquisition - mine data from the Internet

• singing separation - spleeter

• representation extraction – REMI[1]

Lyrics Melody

Pre-training 189,456 17,699

Fine-tuning 3,524 3,524

Ratio of Fine-tuning over Pre-training 1.86% 19.9%
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[1]Huang Y S, Yang Y H. Pop music transformer: Beat-based modeling and generation of expressive pop piano compositions 

[C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 1180-1188.



Experiment - Ablation

• pre-training significantly outperforms the baseline

• both stages are beneficial

The perplexity results with different pre-training setting. S1 and S2 stand for the two pre-training stages
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Experiment - Decoding Setting

M2M evaluation:

• Condition: the first 150 tokens from GT MIDI

• Decoding: decodes melody for 800 steps based on the condition

L2M evaluation:

• Condition: the first 150 tokens from GT Lyric

• Decoding: decodes melody for 800 steps based on the condition
…
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Experiment - Subjective Evaluation

Four aspects for evaluation: 

✓ Similarity the overall similarity of the melody, including rhythm, genre, etc. 

✓ Continuity: is the melody stumbling?

✓ Singability: is the melody easy to sing or not? 

✓ Rhythm: is the duration and pause of melody natural and in line with the genre? 

B: baseline, C: dual transformation loss, and ∗ stands for model with pre-training stage
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Experiment - Objective Evaluation

• perplexity (PPL), rough metric

The perplexity results of four generation tasks
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Experiment - Objective Evaluation

Result of objective metrics for melody evaluation
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Result of subjective metrics for melody evaluation

• MD, HPD, SPD, fine-grained metric
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Result of subjective metrics for melody evaluation

• MD, HPD, SPD, fine-grained metric



Summary

• Take advantage of unpaired data

• Dual transformation loss to better use limited paired data

• SPD evaluation metric avoids some strict assumptions 

• The proposed unified framework improves the performance significantly
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THANKS ！
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