

TRAINING STRATEGIES FOR AUTOMATIC SONG WRITING: A UNIFIED FRAMEWORK PERSPECTIVE

Tao Qian¹, Jiatong Shi², Shuai Guo¹, Peter Wu², Qin Jin¹

¹ Renmin University of China, P.R.China ²Carnegie Mellon University, U.S.A

Introduction

Automatic song writing (ASW)

- lyrics-to-lyrics generation (L2L)
- melody-to-melody generation (M2M)
- lyric-to-melody generation (L2M)
- melody-to-lyric generation (M2L)

This work proposes:

- A unified framework for all ASW tasks
- A objective metric with regard to original musical pieces

1) paired data scarcity

2) weak correlation between melody and lyrics

3) lack of suitable evaluation metrics

- 1) paired data scarcity
 - \rightarrow Leveraging rich unpaired data
- 2) weak correlation between melody and lyrics

3) lack of suitable evaluation metrics

- 1) paired data scarcity
 - \rightarrow Leveraging rich unpaired data
- 2) weak correlation between melody and lyrics
 - \rightarrow A dual transformation loss
- 3) lack of suitable evaluation metrics

- 1) paired data scarcity
 - \rightarrow Leveraging rich unpaired data
- 2) weak correlation between melody and lyrics
 - \rightarrow Proposing a dual transformation loss
- 3) lack of suitable evaluation metrics
 - \rightarrow Proposing a new evaluation criteria

Framework Overview

- Pre-training with unpaired data (L2L, M2M)
- Fine-tuning with paired data (L2M, M2L)

Methodology

Pre-training with unpaired data

- task-specific pre-training: various domain music data
- domain-specific pre-training: pop music to reduce domain gaps

MIDI files are tokenized to REMI^[1] representation

 θ and T represent parameters of model and sequence of lyric or melody.

[1]Huang Y S, Yang Y H. Pop music transformer: Beat-based modeling and generation of expressive pop piano compositions [C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 1180-1188.

Methodology

Fine-tuning with paired data

• Standard Seq2Seq framework for cross domain generation tasks (L2M,M2L)

- Dual Transformation Loss
 - Strengthen the correlation between lyric and melody

$$\begin{array}{c} \begin{array}{c} M2L \\ \hline (X,Y) \\ L2M \\ \hline X \\ Dual transformation loss \end{array} \\ \begin{array}{c} L(src|t\hat{a}r;\theta) = \\ \sum_{n=1}^{|tar|} p(s\hat{r}c|t\hat{a}r;s\hat{r}c_{$$

 θ and *src/tar* represent parameters of model and sequence of lyric or melody.

9

• Soft pitch distribution similarity (SPD): improve HPD for variable-length melodies comparison and focus variation between adjacent pitches according to chromatic rule rather than pitch.

 $\widehat{D}_i = \{x_i - x_{i-1}\}, i \in (1, |\widehat{D}_i|)$

• Soft pitch distribution similarity (SPD): improve HPD for variable-length melodies comparison and focus variation between adjacent pitches according to chromatic rule rather than pitch.

pitch variation

• Soft pitch distribution similarity (SPD): improve HPD for variable-length melodies comparison and focus variation between adjacent pitches according to chromatic rule rather than pitch.

• Soft pitch distribution similarity (SPD): improve HPD for variable-length melodies comparison and focus variation between adjacent pitches according to chromatic rule rather than pitch.

 $OA(Dis(D_i), Dis(\widehat{D}_i))$

• Soft pitch distribution similarity (SPD): improve HPD for variable-length melodies comparison and focus variation between adjacent pitches according to chromatic rule rather than pitch.

Experiment

- Dataset
 - data acquisition mine data from the Internet
 - singing separation spleeter
 - representation extraction REMI^[1]

	Lyrics	Melody
Pre-training	189,456	17,699
Fine-tuning	3,524	3,524
Ratio of Fine-tuning over Pre-training	1.86%	19.9%

[1]Huang Y S, Yang Y H. Pop music transformer: Beat-based modeling and generation of expressive pop piano compositions [C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 1180-1188.

The perplexity results with different pre-training setting. S1 and S2 stand for the two pre-training stages

	L2L/M2L	M2M/L2M	Average
Baseline	16.85/17.18	2.19/2.12	9.59
+ S1	11.49/11.85	2.30/2.29	6.98
+ S2	11.34/12.14	2.28/2.25	7.01
+ S1 + S2	11.10/11.84	2.18/2.00	6.78

- pre-training significantly outperforms the baseline
- both stages are beneficial

Experiment - Decoding Setting

M2M evaluation:

• Condition: the first 150 tokens from GT MIDI

• Decoding: decodes melody for 800 steps based on the condition

L2M evaluation:

- Condition: the first 150 tokens from GT Lyric 故事的小黄花,从出生那年就飘着,童年的荡秋千…
- Decoding: decodes melody for 800 steps based on the condition

Four aspects for evaluation:

- ✓ **Similarity** the overall similarity of the melody, including rhythm, genre, etc.
- ✓ **Continuity**: is the melody stumbling?
- ✓ **Singability**: is the melody easy to sing or not?
- ✓ **Rhythm**: is the duration and pause of melody natural and in line with the genre?

	Similarity	Continuity	Singability	Rhythm		Similarity	Continuity	Singability	Rhythm
GT	-	3.81	3.54	3.80	GT	-	3.81	3.54	3.80
В	2.36	2.66	2.28	2.79	В	2.11	2.52	2.24	2.72
\mathbf{B}^*	2.54	2.78	2.59	2.95	\mathbf{B}^*	2.39	2.66	2.49	2.85
$B^* + C$	2.79	3.02	2.67	3.09	$B^* + C$	2.59	2.97	2.69	3.11

(a) Subjective evaluation results of L2M

(b) Subjective evaluation results of M2M.

B: baseline, C: dual transformation loss, and * stands for model with pre-training stage

• perplexity (PPL), rough metric

The perplexity results of four generation tasks

	L2L	M2L	M2M	L2M	Average
В	16.85	17.18	2.19	2.12	9.59
\mathbf{B}^*	11.17	11.89	2.21	2.15	6.86
$B^* + C$	11.10	11.84	2.18	2.00	6.78

• MD, HPD, SPD, fine-grained metric

	Similarity	Continuity	Singability	Rhythm
GT	-	3.81	3.54	3.80
В	2.36	2.66	2.28	2.79
\mathbf{B}^*	2.54	2.78	2.59	2.95
$B^* + C$	2.79	3.02	2.67	3.09

Result of subjective metrics for melody evaluation

(a) Subjective evaluation results of L2M

	Similarity	Continuity	Singability	Rhythm
GT	-	3.81	3.54	3.80
В	2.11	2.52	2.24	2.72
\mathbf{B}^*	2.39	2.66	2.49	2.85
$B^* + C$	2.59	2.97	2.69	3.11

(b) Subjective evaluation results of M2M.

		$MD(\downarrow)$	HPD (%, ↑)	SPD (%, ↑)
	В	20.20	7.08	31.63
L 2M	B*	22.76	15.07	34.51
	$B^* + C$	30.7	10.58	40.04
	B	38.09	6.30	28.57
мэм	\mathbf{B}^*	23.29	14.64	31.48
	$B^* + C$	36.32	11.53	38.35

• MD, HPD, SPD, fine-grained metric

	Similarity	Continuity	Singability	Rhythm
GT	-	3.81	3.54	3.80
В	2.36	2.66	2.28	2.79
\mathbf{B}^*	2.54	2.78	2.59	2.95
$B^* + C$	2.79	3.02	2.67	3.09

Result of subjective metrics for melody evaluation

(a) Subjective evaluation results of L2M

	Similarity	Continuity	Singability	Rhythm
GT	-	3.81	3.54	3.80
В	2.11	2.52	2.24	2.72
\mathbf{B}^*	2.39	2.66	2.49	2.85
$B^* + C$	2.59	2.97	2.69	3.11

(b) Subjective evaluation results of M2M.

		MD (↓)	HPD $(\%, \uparrow)$	SPD (%, ↑)
L2M	B	20.20	7.08	31.63
	B*	22.76	15.07	34.51
	B*+ C	30.7	10.58	40.04
M2M	B	38.09	6.30	28.57
	B*	23.29	14.64	31.48
	B*+ C	36.32	11.53	38.35

• MD, HPD, SPD, fine-grained metric

	Similarity	Continuity	Singability	Rhythm
GT	-	3.81	3.54	3.80
В	2.36	2.66	2.28	2.79
\mathbf{B}^*	2.54	2.78	2.59	2.95
$B^* + C$	2.79	3.02	2.67	3.09

Result of subjective metrics for melody evaluation

(a) Subjective evaluation results of L2M

	Similarity	Continuity	Singability	Rhythm
GT	-	3.81	3.54	3.80
В	2.11	2.52	2.24	2.72
\mathbf{B}^*	2.39	2.66	2.49	2.85
$B^* + C$	2.59	2.97	2.69	3.11

(b) Subjective evaluation results of M2M.

		$\mathrm{MD}\left(\downarrow\right)$	HPD (%, ↑)	SPD (%, ↑)
L2M	$B B^* B^* + C$	20.20 22.76 30.7	7.08 15.07 10.58	31.63 34.51 40.04
M2M	B B* B*+ C	38.09 23.29 36.32	6.30 14.64 11.53	28.57 31.48 38.35

• MD, HPD, SPD, fine-grained metric

			-	
	Similarity	Continuity	Singability	Rhythm
GT	-	3.81	3.54	3.80
В	2.36	2.66	2.28	2.79
\mathbf{B}^*	2.54	2.78	2.59	2.95
$B^* + C$	2.79	3.02	2.67	3.09

Result of subjective metrics for melody evaluation

(a) Subjective evaluation results of L2M

	Similarity	Continuity	Singability	Rhythm
GT	-	3.81	3.54	3.80
В	2.11	2.52	2.24	2.72
\mathbf{B}^*	2.39	2.66	2.49	2.85
$B^* + C$	2.59	2.97	2.69	3.11

(b) Subjective evaluation results of M2M.

		$MD(\downarrow)$	HPD (%, ↑)	SPD (%, ↑)
L2M	$B B^* B^* + C$	20.20 22.76 30.7	7.08 15.07 10.58	31.63 34.51 40.04
M2M	B B* B*+ C	38.09 23.29 36.32	6.30 14.64 11.53	28.57 31.48 38.35

- Take advantage of **unpaired data**
- Dual transformation loss to **better use limited paired data**
- SPD evaluation metric avoids some strict assumptions
- The proposed unified framework improves the performance significantly

THANKS