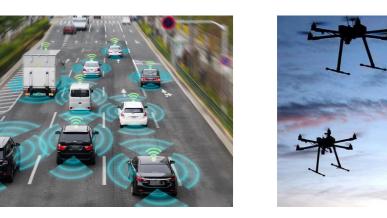
UNROLLING PARTICLES: UNSUPERVISED LEARNING OF SAMPLING DISTRIBUTIONS

Nonlinear Dynamical Systems

► The time evolution of some phenomena under study \Rightarrow Depends nonlinearly on previous states



Tracking

Robotics

Communications

Estimate some unknown quantity dependent on the state of the system \Rightarrow No access to the state, we have access only to observations

Particle Filtering

- ► We know the distributions ⇒ System transition, measurements \Rightarrow Bayesian framework \Rightarrow Estimate of the state given the observations
- Computing the Bayesian estimate can be computationally intractable \blacktriangleright Particle filtering \Rightarrow Efficient sampling from a designed distribution \Rightarrow Average samples to construct an estimator that is good enough

Unrolling Particles

Designing an efficient sampling distribution that leads to good \Rightarrow It is difficult \Rightarrow Balance the model with sampling efficiency \Rightarrow Avoid weight degeneracy in the resulting sampled particles [Doucet et al, 2000; Djurić et al, 2003; Godsill, 2019; ur Rehman et al, 2018; Ryu and Boyd, 2015; Elvira and Martino, 2021]

Objective

Learn an efficient sampling distribution based only on observations

- Leverage algorithm unrolling to learn a parametric distribution
- Neural networks to learn the mean and variance of a multivariate normal
- ► Train the neural networks using an unsupervised learning approach
- \Rightarrow Minimize weight degeneracy

Nonlinear Dynamical Systems

- ► Let $\{\mathbf{x}_t\}_{t>0}$ be a sequence of states $\mathbf{x}_t \in \mathbb{R}^N \Rightarrow$ Unobservable
- ► Let $\{\mathbf{y}_t\}_{t>0}$ be a sequence of measurements $\mathbf{y}_t \in \mathbb{R}^M \Rightarrow \text{Observable}$
- The nonlinear dynamic system is completely characterized by (which are considered known)

Initial state: $\mathbf{x}_0 \sim p(\mathbf{x}_0)$,	Transition: $p(\mathbf{x}_t \mathbf{x}_{t-1})$,	Measurement: $p(\mathbf{y}_t \mathbf{x}_t)$
--	---	--	---	---

References

- ► A. Doucet, S. Godsill, and C. Andrieu, "On sequential Monte Carlo sampling methods for Bayesian filtering," Stat. Comput., vol. 10, no. 3, pp. 197?208, July 2000.
- ► V. Elvira, L. Martino, M. F. Bugallo, and P. Djurić, "Eluci- dating the auxiliary particle filter via multiple importance sam- pling," IEEE Signal Process. Mag., vol. 36, no. 6, pp. 145?152, 30 Oct. 2019, lecture notes.
- ► V. Monga, Y. Li, and Y. C. Eldar, "Algorithm unrolling: Inter-pretable, efficient deep learning for signal and image process- ing," IEEE Signal *Process. Mag.*, vol. 38, no. 2, pp. 18?44, March 2021.

Fernando Gama, Nicolas Zilberstein, Richard G. Baraniuk and Santiago Segarra Department of Electrical and Computer Engineering, Rice University, Houston, TX

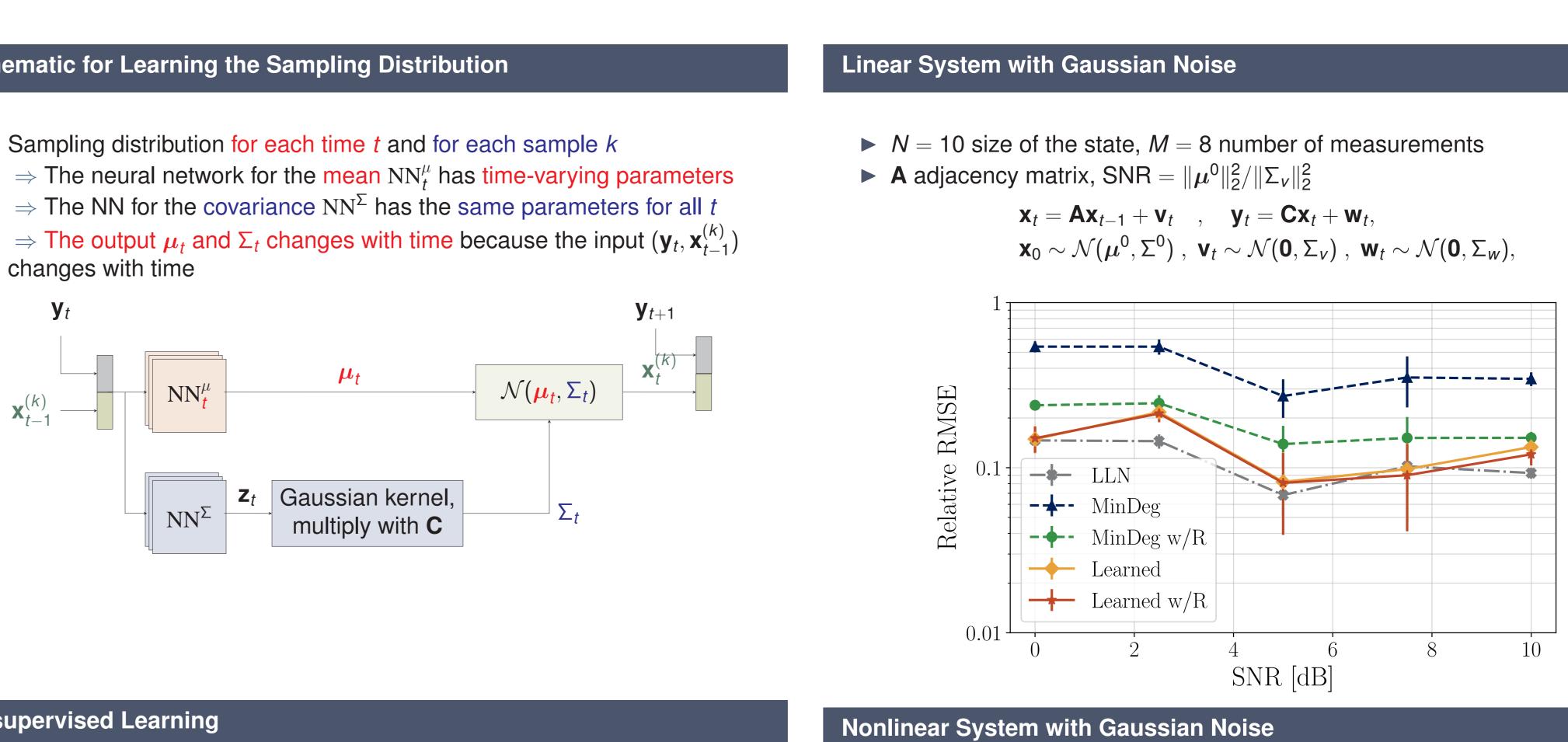
Particle Filtering	Sche
 The objective is to estimate some function f_t of the states ⇒ We only access observations Computing the posterior p(x_{0:t} y_{0:t}) is typically intractable ⇒ Use particle filtering ⇒ Estimate the function by sampling {x_{0:t}^(k)}_{k=1}^K ~ π(x_{0:t} y_{0:t})	
Design π(x _{0:t} y _{0:t}) ⇒ Good estimates, easy to sample ⇒ Assume sequential sampling	
$\pi(\mathbf{x}_{0:t} \mathbf{y}_{0:t}) = \pi(\mathbf{x}_{0:t-1} \mathbf{y}_{0:t-1})\pi(\mathbf{x}_{t} \mathbf{x}_{0:t-1}, \mathbf{y}_{0:t})$ • Now the weights can be updated sequentially \Rightarrow All known quantities \Rightarrow Normalize for computing \hat{f}_{t} $\tilde{w}_{t}^{(k)} = \tilde{w}_{t-1}^{(k)} \frac{p(\mathbf{y}_{t} \mathbf{x}_{t}^{(k)})p(\mathbf{x}_{t}^{(k)} \mathbf{x}_{t-1}^{(k)})}{\pi(\mathbf{x}_{t}^{(k)} \mathbf{x}_{0:t-1}^{(k)}, \mathbf{y}_{t})}$, $w_{t}^{(k)} = \frac{\tilde{w}_{t}^{(k)}}{\sum_{k=0}^{K} \tilde{w}_{t}^{(k)}}$ • Sequential sampling distributions \Rightarrow particle degeneracy	
$\Rightarrow \text{Most weights } w_t^{(k)} \to 0 \text{ except for one}$ $\Rightarrow \text{Minimize it with } \pi(\mathbf{x}_t \mathbf{x}_{0:t-1}^{(k)}, \mathbf{y}_{0:t}) = p(\mathbf{x}_t \mathbf{x}_{t-1}^{(k)}, \mathbf{y}_t)$	Unsu
► Cannot be avoided ⇒ Resampling ⇒ Estimate effective sample size, keep the largest ones	
Learning the Sampling Distribution	
• A good sampling distribution may depend only on \mathbf{x}_{t-1} and \mathbf{y}_t $\pi(\mathbf{x}_t \mathbf{x}_{0:t-1}, \mathbf{y}_{0:t}) = \pi(\mathbf{x}_t \mathbf{x}_{t-1}, \mathbf{y}_t)$	
• We propose a multivariate normal distribution \Rightarrow Easy to sample $\pi(\mathbf{x}_t \mathbf{x}_{t-1}, \mathbf{y}_t) = \mathcal{N}(\mu_t(\mathbf{x}_{t-1}, \mathbf{y}_t), \Sigma_t(\mathbf{x}_{t-1}, \mathbf{y}_t))$	
We use algorithm unrolling for learning the mean and the variance	

Learning the Mean

• Algorithm unrolling \Rightarrow We use a neural network for every time iteration	
$NN_t^{\mu}(\mathbf{x}_{t-1}, \mathbf{y}_t) = \mathbf{z}_t^{(L_t)} \text{ where } \mathbf{z}_t^{(\ell)} = \rho_t \big(\mathbf{A}_t^{(\ell)} \mathbf{z}_t^{(\ell-1)} + \mathbf{b}_t^{(\ell)}\big)$	
⇒ For every <i>t</i> there is a different neural network ⇒ L_t layers and nonlinearity ρ_t ⇒ Each layer is determined by $N_t^{\ell} \Rightarrow \mathbf{A}_t^{(\ell)}$ of size $N_t^{(\ell)} \times N_t^{(\ell-1)}$	
• The input is given by the concatenation of \mathbf{x}_{t-1} and \mathbf{y}_t	
$\mathbf{z}_t^{(0)} = [\mathbf{x}_{t-1}^T, \mathbf{y}_t^T]^T \in \mathbb{R}^{N+M}$	
The learned mean is collected at the end of the last layer	
\Rightarrow It has size $N_t^{(L_t)} = N \Rightarrow$ The same size as \mathbf{x}_t	

► The values of L_t , ρ_t and $N_t^{(\ell)}$ are all design choices \Rightarrow Hyperparameters

	Num
Learning the Covariance	
We learn the covariance matrix with a time-invariant framework	
$\mathbf{\Sigma}_t(\mathbf{x}_{t-1},\mathbf{y}_t) = \mathbf{\Sigma}(\mathbf{x}_{t-1},\mathbf{y}_t) = \mathbf{C}\mathbf{D}(\mathbf{x}_{t-1},\mathbf{y}_t)\mathbf{C}^{ op}$	
• Here, the $N \times N$ matrix $D(\mathbf{x}_{t-1}, \mathbf{y}_t)$ represents the gaussian kernel	
$\begin{bmatrix} \mathbf{D}(\mathbf{x}_{t-1}, \mathbf{y}_t) \end{bmatrix}_{ij} = \exp\left(-([\mathbf{z}_t]_i - [\mathbf{z}_t]_j)^2\right)$	
\Rightarrow It is applied on the output of a neural network	
\Rightarrow We learn an appropriate representation	
$\mathbf{z}_t = \mathbf{N}\mathbf{N}^{\Sigma}(\mathbf{x}_{t-1}, \mathbf{y}_t)$	
• The $N \times N$ matrix C is also learned	
\Rightarrow Learn different covariance directions	



upervised Learning

Unsupervised learning

- \Rightarrow We only have access to the sequence of observations $\{\mathbf{y}_t\}$
- \Rightarrow Does not require access to the true trajectories {**x**_t} of the system \Rightarrow Allows the sampling distribution to generalize to unseen trajectories
- Learn a distribution such that the weights are similar to each other (k) (k) (k)

$$J(\{w_t^{(k)}\}_{t,k}) = \sum_{t=0}^{T-1} \sum_{k=1}^{K} \log(w_t^{(k)}) \quad \text{with} \quad \tilde{w}_t^{(k)} = \tilde{w}_{t-1}^{(k)} \frac{p(\mathbf{y}_t | \mathbf{x}_t^{(k)}) p(\mathbf{x}_t^{(k)} | \mathbf{x}_{t-1}^{(k)})}{\pi(\mathbf{x}_t^{(k)} | \mathbf{x}_{0:t-1}^{(k)}, \mathbf{y}_t)}$$

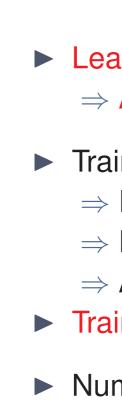
- \Rightarrow The function J is maximized when all the weights are equal to 1/K \Rightarrow When weights $w_t^{(k)}$ get too small, they are penalized by the logarithm
- \Rightarrow Reduced benefit for increasing a weight that is already large
- Maximizing J can be done via a stochastic gradient ascent algorithm
- \Rightarrow Gradients are propagated via the reparametrization trick

Numerical Experiments

- Given a sequence of measurements $\{\mathbf{y}_t\}$ from some dynamical system \Rightarrow Estimate $\mathbb{E}[\mathbf{x}_t | \mathbf{y}_{0:t}]$
- Three experimental scenarios to illustrate three different aspects
- ▷ A linear system with Gaussian noise \Rightarrow Posterior is known and estimator obtained in closed form
- A nonlinear system with Gaussian noise
- \Rightarrow Minimum degeneracy distribution can be obtained
- A linear system with non-Gaussian noise \Rightarrow Neither the posterior nor the minimum degeneracy
- The learned distribution is compared with the minimum degeneracy one \Rightarrow Try with and without resampling (only at test time, not at training time)

Numerical Experiments: Setting

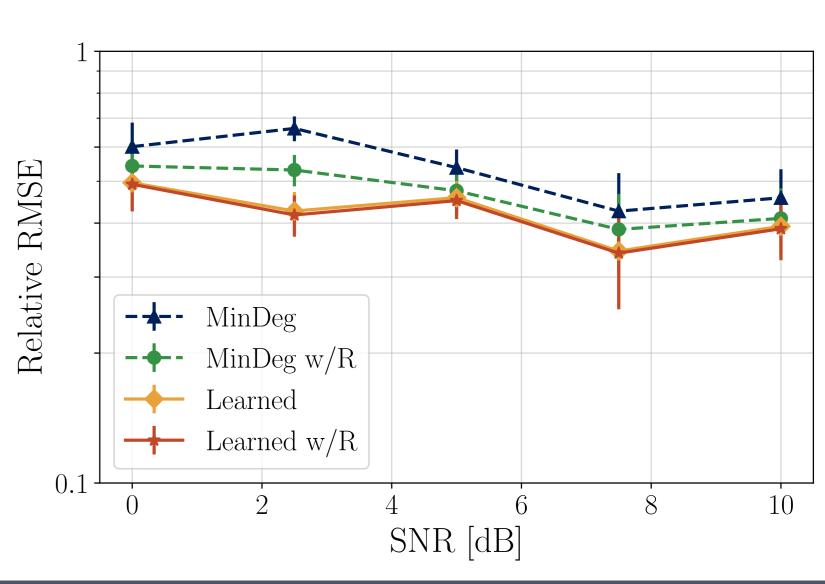
- Set $L_t = 2$ layers and nonlinearity $\rho_t = \tanh$ Set $N_t^{(1)} = 256$ and $N_t^{(2)} = 512$ for all t
- Train by running the particle filtering, computing the loss \Rightarrow Using ADAM with learning rate 0.001 The number of particles simulated on each run is K = 25
- The particle filter is run 200 times, updating the parameters each time
- Test by running the particle filters 100 times, drawing K = 25 particles Compute the relative RMSE between the estimate and the target value Set $K_{\text{thres}} = K/3$ as the threshold for resampling during test time
- Run the entire training and testing for 10 times, \Rightarrow Report median and standard deviation



= 10 size of the state, M = 8 number of measurements absolute value, $SNR = \|\mu^0\|_2^2 / \|\Sigma_v\|_2^2$

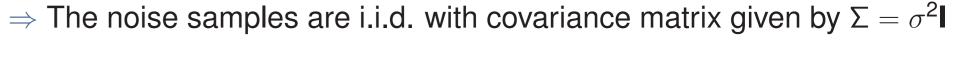
 $\mathbf{x}_t = \phi(\mathbf{A}\mathbf{x}_{t-1}) + \mathbf{v}_t, \quad , \quad \mathbf{y}_t = \mathbf{C}\mathbf{x}_t + \mathbf{w}_t,$

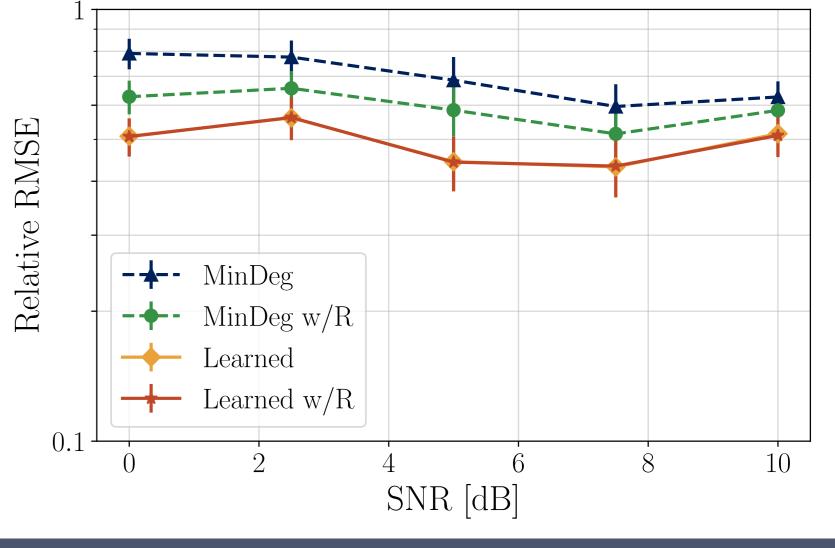
 $\mathbf{X}_0 \sim \mathcal{N}(\boldsymbol{\mu}^0, \Sigma^0) \;,\; \mathbf{V}_t \sim \mathcal{N}(\mathbf{0}, \Sigma_{\mathbf{v}}) \;,\; \mathbf{W}_t \sim \mathcal{N}(\mathbf{0}, \Sigma_{\mathbf{w}}),$



Linear System with Uniform Noise

► Linear system with linear measurements \Rightarrow The initial state and the noise are uniform





Conclusions

Learning sampling distributions for particle filters \Rightarrow Algorithm unrolling for learning a multivariate normal

Train in unsupervised learning framework

 \Rightarrow Requires access only to the sequence of measurements \Rightarrow Does not require access to the true trajectories of the system \Rightarrow Allows the sampling distribution to generalize to unseen trajectories Train to minimize degeneracy by maximizing a logarithm of the weights

Numerical experiments showcase improved performance