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Joint Beamforming and Compression Problem

Cooperative cellular network

rate-limited fronthaul
effectively mitigating multiuser intercell interference
joint processing at CP

Joint beamforming and compression problem
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Literature Review

Uplink ⇒ well solved

Downlink

Simeone13 Maximize the weighted sum-rate
⇒ stationary point [1]

Liu21 Minimize the total power
⇒ duality results and global solution [2]

This paper Minimize the total power
⇒ global solution with high efficiency [3]
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System Model

A cooperative cellular network consists of

one CP,

M single-antenna relay-like BSs (will be called relays for short later),

K single-antenna users.

Users and relays are connected by noisy wireless channels.

Relays and the CP are connected by noiseless fronthaul links of finite rate.

Let M and K denote the sets of the relays and the users, respectively.

The channel between any users and relays is known at the CP.
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Compression Model

CP relays

Transmitted signal at CP x̃ =
∑K

k=1 v ksk , where

v k = [vk,1, . . . , vk,M ]T is a beamforming vector,

sk ∼ CN (0, 1) is the information signal for user k

Compressed before transmitted

Compression error e = [e1, . . . , em]
T ∼ CN (0,Q)

Covariance matrix Q

Received signal at relays xm =
∑K

k=1 vk,msk + em
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Channel Model

relays users

Received signal at users:
yk =

∑M
m=1 hk,mxm + zk

Transmitted signal at relays: xm

hk,m is the channel coefficient from relay
m to user k , and

{zk} are i.i.d. additive Gaussian noise
distributed as CN (0, σ2).
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Total Transmit Power, SINR and Compression Rate

Received signal at users with hk = [hk,1, . . . , hk,M ]†:

yk = h†
k

(
K∑
i=1

v i si

)
+ h†

ke + zk

Total transmit power of all the relays is
∑K

k=1 ∥v k∥2 +Q • I
SINR of user k is

|h†
kv k |2∑

j ̸=k |h
†
kv j |2 + h†

kQhk + σ2
, ∀ k ∈ K

Compression rate of relay m under the multivariate compression strategy [1] is

log2

∑K
k=1 |vk,m|2 +Q(m,m)

Q(m:M,m:M)/Q(m+1:M,m+1:M)
, ∀ m ∈ M

Q(m:M,m:M)/Q(m+1:M,m+1:M) is the Schur complement
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Problem Formulation

The joint beamforming and compression problem [2]:

min
{v k},Q

total power︷ ︸︸ ︷
K∑

k=1

∥v k∥2 +Q • I

s.t.

SINR of user k︷ ︸︸ ︷
|h†

kv k |2∑
j ̸=k |h

†
kv j |2 + h†

kQhk + σ2
≥

SINR target of user k︷︸︸︷
γk , ∀ k ∈ K,

fronthaul rate of relay m︷ ︸︸ ︷
log2

∑K
k=1 |vk,m|2 +Q(m,m)

Q(m:M,m:M)/Q(m+1:M,m+1:M)
≤

fronthaul capacity of relay m︷︸︸︷
Cm , ∀ m ∈ M,

Q ⪰ 0.
(1)
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Problem Formulation

Equivalent formulation of (1) [2, Propostion 4]:

min
{v k},Q

K∑
k=1

∥v k∥2 +Q • I

s.t. v †
kHkv k − γk

∑
j ̸=k

v †
j Hkv j +Q •Hk + σ2

 ≥ 0, ∀ k ∈ K,

ηm

[
0 0
0 Q(m:M,m:M)

]
− E†

m

(
K∑

k=1

v kv †
k +Q

)
Em ⪰ 0,

∀ m ∈ M,

Q ⪰ 0,

(P)

where

Hk = hkh†
k , ηm = 2Cm .
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Agenda

Design an efficient algorithm for solving (P)

1 Show zero-duality gap

1 Derive the SDR of (P)

2 Derive the dual problem of (P)

3 Show that SDR is tight

2 Solve the KKT optimality conditions of the SDR based on its special structure
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SDR of (P)

Semidefinite relaxation (SDR) of (P):

min
{Vk},Q

K∑
k=1

Vk • I+Q • I

s.t. ak({Vk} ,Q) ≥ 0, ∀ k ∈ K,

Bm({Vk} ,Q) ⪰ 0, ∀ m ∈ M,

Vk ⪰ 0, ∀ k ∈ K,

Q ⪰ 0,

(2)

where

ak({Vk} ,Q) = Vk •Hk − γk

∑
j ̸=k

Vj •Hk +Q •Hk + σ2

 ,

Bm({Vk} ,Q) = ηm

[
0 0
0 Q(m:M,m:M)

]
− E†

m

(
K∑

k=1

Vk +Q

)
Em.

Xilai Fan ICASSP 2022 11 / 26



Lagrangian Dual of (2)

The Lagrangian dual of problem (2):

max
{βk},{Λm}

K∑
k=1

(γkσ
2)βk

s.t. Ck({βk} , {Λm})− βkHk ⪰ 0, ∀ k ∈ K,

D({βk} , {Λm}) ⪰ 0,

βk ≥ 0, ∀ k ∈ K,

Λm ⪰ 0, ∀ m ∈ M,

(3)

Ck({βk} , {Λm}) = I+
M∑

m=1

E†
mΛmEm +

∑
j ̸=k

βjγjHj ,

D({βk} , {Λm}) = I−
M∑

m=1

ηm

[
0 0

0 Λ
(m:M,m:M)
m

]
+

K∑
k=1

βkγkHk +
M∑

m=1

E†
mΛmEm.
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Tightness of SDR

min
Vk ,Q

Pdl

s.t. βk : ak ≥ 0, k ∈ K,

Λm : Bm ⪰ 0, m ∈ M,

Vk , Q ⪰ 0, k ∈ K.
(2)

max
βk ,Λm

Pul

s.t. Vk : Ck − βkHk ⪰ 0, ∀k ∈ K,

Q : D ⪰ 0,

βk ≥ 0, ∀k ∈ K,

Λm ⪰ 0, ∀m ∈ M.
(3)

Theorem

Suppose that problem (2) is feasible. Then it always has a rank-one solution.
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Agenda

Design an efficient algorithm for solving (P)

1 Show zero-duality gap

2 Solve the KKT optimality conditions of (2) based on its special structure

1 Write out the equivalent KKT conditions

2 Separate the equations into two sets and solve the equations involving the
dual variables first and then the equations involving the primal variables

3 Show that each set of equations can be solved elegantly via fixed-point
iteration
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KKT Conditions of SDR and Dual Problem

Equivalent KKT conditions:

D({βk} , {Λm}) = 0, (4)

rank(Λm) = 1, Λm ⪰ 0, ∀ m ∈ M,

Λ(1:m−1,1:m)
m = 0, Λ(m:M,1:m−1)

m = 0, ∀ m ∈ M,

}
(5)

rank(Ck({βk} , {Λm})− βkHk) = M − 1, ∀ m ∈ M,

Ck({βk} , {Λm})− βkHk ⪰ 0, ∀ m ∈ M,

}
(6)

βk ≥ 0, ∀ k ∈ K, (7)

Vk • (Ck({βk} , {Λm})− βkHk) = 0, ∀ k ∈ K, (8)

Vk ⪰ 0, rank(Vk) = 1, ∀ k ∈ K, (9)

ak({Vk} ,Q) = 0, ∀ k ∈ K, (10)

Bm({Vk} ,Q) ⪰ 0, ∀ m ∈ M, (11)

Λm • Bm({Vk} ,Q) = 0, ∀ m ∈ M, (12)

Q ⪰ 0. (13)

Xilai Fan ICASSP 2022 15 / 26



Solving Eqs. (4)–(7): Eqs. (4) and (5)

Given {βk}
Equivalent form of Eq. (4):

M∑
m=1

ηm

[
0 0

0 Λ
(m:M,m:M)
m

]
−

M∑
m=1

E†
mΛmEm = I+

K∑
k=1

βkγkHk ≜ Γ

only Λ1 affects the first row and column of matrix Γ ⇒ the entries in the first

row of Λ1 should be
[

1
η1−1Γ

(1,1), 1
η1
Γ(1,2:M)

]
Λ1 is of rank one (Eq. (5)) ⇒ further obtain all entries of Λ1

Subtract all terms related to Λ1:

M∑
m=2

ηm

[
0 0

0 Λ
(m:M,m:M)
m

]
−

M∑
m=2

E†
mΛmEm = Γ− ηmΛ1 + E1Λ1E1 ≜ Γ′

Repeat the above procedure to find all Λm (which is also unique)

Denote the solution to Eqs. (4)–(5) as {Λm ({βk})}
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Solving Eqs. (4)–(7): Eqs. (6) and (7)

Given {Λm}

Define Ck ≜ Ck({βk} , {Λm}). Recall Eq. (6):{
rank(Ck − βkHk) = M − 1, ∀ m ∈ M,

Ck − βkHk ⪰ 0, ∀ m ∈ M

Notice that Hk ⪰ 0 is of rank one ⇒ closed-form solution for βk :

βk

(
{Λm} , {βj}j ̸=k

)
=
(
h†
kC

−1
k hk

)−1

> 0
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Solving Eqs. (4)–(7) by Fixed-point Iteration

Known {βk} ⇒ {Λm ({βk})} (Eqs. (4) and (5) holds)

Known {Λm} ⇒
{
βk

(
{Λm} , {βj}j ̸=k

)}
(Eqs. (6) and (7) holds)

({βk}, {Λm ({βk})}) that satisfy

βk = Ik ({βk}) ≜ βk

(
{Λm ({βk})} , {βj}j ̸=k

)
, ∀ k ∈ K (14)

⇒ all Eqs. (4)–(7) holds

Define β = [β1, . . . , βK ]
T and I (β) = [I1({βk}), . . . , IK ({βk})]T, then (14)

becomes
β = I (β). (15)

Lemma

The function I (·) defined in (15) is a standard interference function.

The fixed-point iteration β(i+1) = I (β(i)) will converge to the unique solution
of (15). (Lemma and [4, Theorem 2])
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Solving Eqs. (8)–(13)

Given {βk} and {Λm} that satisfy Eqs. (4)–(7), find {Vk} and Q that satisfy
Eqs. (8)–(13).

Eqs. (8) and (9)

Vk • (Ck − βkHk) = 0, ∀ k ∈ K; Vk ⪰ 0, rank(Vk) = 1, ∀ k ∈ K

⇒ v k =
C−1
k hk

∥C−1
k hk∥

Uk = v kv †
k (known), Vk = pkUk ({pk} are the unknowns)

Given Q, Eq. (10) ⇒

pk
(
Q, {pj}j ̸=k

)
=

γk

(∑
j ̸=k pjUj •Hk +Q •Hk + σ2

)
Uk •Hk

Given {pk}, Eqs. (11)-(13) ⇒ Q({pk})
Fixed-point iteration p(i+1) = J(p(i)), standard interference function J(·) ⇒
solves Eqs. (8)–(13)
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Proposed Algorithm

The algorithm first finds {βk} and {Λm} that satisfy Eqs. (4)–(7);

With found {βk} and {Λm} fixed, the algorithm then finds {Vk} and Q that
satisfy Eqs. (8)–(13).

Hence, {Vk}, Q, {βk} , and {Λm} together satisfy Eqs. (4)–(13) and thus is
a KKT point of problem (2).

Since rank (Vk) = 1 for all k , we can recover the optimal solution for
problem (P).

Algorithm 1 Proposed Algorithm for Solving Problem (P)

1: Find {βk} and {Λm} that satisfy Eqs. (4)–(7) by performing the fixed-point
iteration in (15) on {βk} until the desired error bound is met.

2: Find {Vk} and Q that satisfy Eqs. (8)–(13) by performing an appropriate fixed-
point iteration on {pk} until the desired error bound is met.

3: Find v k such that Vk = v kv †
k , ∀ k ∈ K.

4: Output: {v k} and Q.
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Global Optimality Guarantee and Remarks

Theorem

If the SDR in (2) is feasible, then proposed Algorithm 1 returns the optimal
solution of problem (P).

Remarks:

Global optimality

Computationally efficient: cheap evaluation in each step
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Parameters Setting

Consider a network with

M = 8 relays and K = 10 users,

the wireless channels between these relays and users are generated based on
the i.i.d. Rayleigh fading model following CN (0, 1),

and the fronthaul capacities between all relays and the CP are set to be 3 bits
per symbol (bps).

Moreover, the noise powers at the users are set to be σ2 = 1.

The rate targets for all the users are assumed to be identical.

All simulation results are obtained by averaging over 200 Monte-Carlo runs.
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Benchmarks

Benchmark1: directly call CVX to solve the SDR in (2) ⇒ verify the tightness

Benchmark2: the proposed algorithm in [2] ⇒ compare the efficiency

Fixed-point iteration ⇒ dual uplink problem

Standard optimization solver (CVX) ⇒ reduced primal downlink problem
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Simulation Results
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Fig. (a) verifies the tightness of the SDR and the global optimality of the
solution returned by the proposed algorithm.

Fig. (b) shows the high efficiency of our proposed algorithm.
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Summary

Propose an efficient and global algorithm for solving the downlink
beamforming and compression problem

Solve the KKT conditions by judiciously exploiting the problem structure

Achieve the global optimality as the state-of-the-art algorithm proposed in [2]
but with a significant less CPU time
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