Efficiently and Globally Solving Joint Beamforming and Compression Problem in the Cooperative Cellular Network via Lagrangian Duality

Main Contribution

e [he downlink joint beamforming and compression problem is a chal-
lenging task In the cooperative cellular network.

e The rate-limited fronthaul between the central processor (CP) and
base stations (BSs) poses constraints that are difficult to handle.

e The joint optimization of beamforming vectors and the covariance
matrix of the compression error also makes the problem highly non-
CONVeX.

o We establish the tightness of the semidefinite relaxation (SDR) of the
considered problem and thus the equivalence of the two problems.

e We propose a global and efficient algorithm for the considered prob-
lem via Lagrangian duality.
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Problem Formulation (Cont.)

e The semidefinite relaxation problem (SDR) and its dual problem can
be derived accordingly and have the following forms:
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The Proposed Algorithm

e Design an efficient algorithm for solving (P).
e We show that (SDR) is a tight relaxation of (P).

e Solve the KKT optimality conditions of (SDR) based on its special
structure:

1. Write out the equivalent KKT conditions:
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2. Separate the equations into two sets (Egs. (1)—(4) and Egs. (5)-
(10)) and solve the equations involving the dual variables first and
then the equations involving the primal variables.

3. Show that each set of equations can be solved elegantly via fixed-
point I1teration.
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The Proposed Algorithm (Cont.)

e First, consider solving Eqgs. (1)—(4).
e Given {3, }, one equivalent form of Eq. (1) is
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e Only A, affects the first row and column of matrix I'. = The entries

in the first row of A, should be {ml_lrﬂ»l), nilrm:M)]_

e A, is of rank one. (Eq. (2)) = Further obtain all entries of A;.

e Subtract all terms related to A; from both sides:
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e Repeat the above procedure to find all A,,. Denote the solution to

Eqs. (1)-(2) as { Ay, ({5,1)]
e Given {A,_}, by Eq. (3) and since H; = 0 is of rank one, we have

5 (101 01 0) = (hlCime) >0
o If one find ({5, }, {A,. ({5,.})}) that satisfy

Be= ({81 2 B ({An {BDY 4B}, ) - YR EK, (11

then all Egs. (1)—(4) holds.
o Define B = [B1,...,0xk]" and I(B) = [L({B.}),..., Ix({B. D],

then (11) is to find the fixed-point of function I(-).
e We can show that I(-) is a standard interference function.

o The fixed-point iteration 37+t = I(3%) will converge to the unique
fixed point of I(-). (Lemma and [3, Theorem 2|)

e Solving Egs. (5)—(10) can also be reduced to find a fixed-point of
some standard interference function J(-). Hence, it can also be
solved by performing a fixed-point iteration.

Algorithm 1 Proposed Algorithm for Solving Problem (P)
1: Find {8,} and {A,,} that satisfy Eqs. (1)-(4) by performing a fixed-point
iteration via I(-) on {3, } until the desired error bound is met.
2: Find {V,} and Q that satisfy Eqgs. (5)-(10) by performing a fixed-point
iteration via J(-) on {p,} until the desired error bound is met.
3: Find v, such that V, = kav};, V ke .
4: Output: {vg} and Q.

e Global optimality guarantee: If (SDR) is feasible, then proposed Al-
gorithm 1 returns the optimal solution of problem (P).

e Computationally efficient: The evaluation of fixed-point iteration
functions, namely I(-) and J(-), are cheap.

&

Simulation Results

e Consider a network with

— M = 8 relays and K = 10 users,

— the wireless channels between relays and users are generated based
on the i.i.d. Rayleigh fading model following CN (0, 1),

— and the fronthaul capacities between all relays and the CP are set
to be 3 bits per symbol (bps).

e Moreover, the noise powers at the users are set to be 0% = 1.
e [he rate targets for all the users are assumed to be identical.

e All results are obtained by averaging over 200 Monte-Carlo runs.
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Left: Average sum power versus the user rate target;
Right: Average CPU time versus the user rate target.

e Benchmarkl: directly call CVX to solve (SDR) =- verify the tightness

e Benchmark2: the proposed algorithm in [1] = compare the efficiency

o The left figure verifies the tightness of the SDR and the global opti-
mality of the solution returned by the proposed algorithm.

e The right figure shows the high efficiency of our proposed algorithm.

Conclusion

e Propose an efficient and global algorithm for solving the downlink
beamforming and compression problem.

e Solve the KKT conditions by judiciously exploiting the problem struc-
ture.

e Achieve the global optimality as the state-of-the-art algorithm pro-
posed in [1] but with a significant less CPU time.
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