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Hello everyone. My name is Maozhong Fu. I will be presenting our paper titled sparse modeling of the early part of noisy room impulse responses with sparse Bayesian learning. Let's get started.
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My presentation includes four parts.



1. Background

Firstly, I would like to give a brief introduction to the problem we are trying to deal with.



Room Impulse Response (RIR) 1 /16

• A RIR in reverberation environment con-

sists of

− Direct Sound

− Early Reflections

− Late Reflections

• The early part (Direct Sound + Early Reflec-

tions) of a RIR is relatively sparse.

• Modeling of the early part of RIRs have

many applications, such as

− Room Geometry Reconstruction

− Augmented and Virtual Reality

− Dereverberation

A room impulse response mainly consists of three parts, which are direct sound, early reflections, and late reflections. * It can be noted that the early part which includes direct sound and early reflections is relatively sparse. * Modeling of the early part of RIRs see many applications, such as room geometry reconstruction, augmented and virtual reality, and dereverberation.



Room Impulse Response (RIR) 1 /16

• A RIR in reverberation environment con-

sists of

− Direct Sound

− Early Reflections

− Late Reflections

• The early part (Direct Sound + Early Reflec-

tions) of a RIR is relatively sparse.

• Modeling of the early part of RIRs have

many applications, such as

− Room Geometry Reconstruction

− Augmented and Virtual Reality

− Dereverberation

A room impulse response mainly consists of three parts, which are direct sound, early reflections, and late reflections. * It can be noted that the early part which includes direct sound and early reflections is relatively sparse. * Modeling of the early part of RIRs see many applications, such as room geometry reconstruction, augmented and virtual reality, and dereverberation.



Room Impulse Response (RIR) 1 /16

• A RIR in reverberation environment con-

sists of

− Direct Sound

− Early Reflections

− Late Reflections

• The early part (Direct Sound + Early Reflec-

tions) of a RIR is relatively sparse.

• Modeling of the early part of RIRs have

many applications, such as

− Room Geometry Reconstruction

− Augmented and Virtual Reality

− Dereverberation

A room impulse response mainly consists of three parts, which are direct sound, early reflections, and late reflections. * It can be noted that the early part which includes direct sound and early reflections is relatively sparse. * Modeling of the early part of RIRs see many applications, such as room geometry reconstruction, augmented and virtual reality, and dereverberation.



Modeling of RIR 2 /16

• RIRs typically are modeled as long FIR filters which may have thousands of coefficients.

• `1-regularization technology (LASSO) can be used to reduce the coefficient number of the early

part of RIRs.

LASSO

• Being sensitive to regularization param-
eters and requiring finding optimal regular-
ization parameters.

− Grid-search is computational heavy.

− Cross-validation requires training data.

Sparse Bayesian Learning (SBL)

• Being insensitive to user parameters.

• Hyper-parameters are learned adap-

tively from data.

• Being computationally efficient and

sparse-promoting.

RIRs typically are modeled as long finite impulse response filters which may have thousands of coefficients. * Some L1-regularization-based approaches utilize the sparsity of the early part of RIRs to reduce the coefficient number. * However, they are sensitive to regularization parameters. One common way to find an optimal regularization parameter is using grid-search, but it is computational heavy in practice. Another common way is to use cross-validation, but it requires suitable training data which may not always be available. * Sparse Bayesian learning has been proven that it is insensitive to the user parameters. The hyper-parameters of SBL are learned adaptively from data. And SBL is quite computational efficient and sparse promoting. Therefore, we proposed to use SBL to model the early part of RIRs.
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2. Proposed Method

Next, I gonna introduce some details of the proposed method.



Signal Model 3 /16

• Discretizing the RIR measurements in the time-delay domain:

r((n− 1)Ts) =

M∑
m=1

βm s((n− 1)Ts − (m− 1)T∆) + w((n− 1)Ts)

Measurements

Model Coefficients

Source Signal

Noise

• Converting to matrix form:

After discretizing the RIR measurements in the time-delay domain, the measurements can be expressed as the sum of the noise and the convolution result between the model coefficients and the source signal. * Then we can convert it into matrix form. The model coefficients can be represented by a vector x.
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Direct Sound Early Reflections

• Typical Scene: the early part of a RIR contains very few impulse responses.

• Scene is sparse i.e., x is mostly zeros.

In a typical Scene, the early part of an RIR contains very few impulse responses, * thus x is mostly zeros.
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Problem Formulation 5 /16

• Problem 1: Given y, how to recover x with the a priori that x is sparse?

• Problem 2: If the source signal is unknown, how to determine Φ?

Based on the signal and scene models, the modeling of RIRs can be converted into solving two problems. Problem 1 is that given y, how to recover x with the a priori that x is sparse. * And Problem 2 is that if the source signal is unknown, how to determine phi.
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Recover x with SBL - Assumptions 6 /16

• Prior: SBL assumes the m-th component of x follows a zero-mean Gaussian distribution with

variance γm.

• Likelihood: SBL assumes the noise follows a zero-mean Gaussian distribution with variance λ.

We deal with problem 1 with SBL. SBL adopts the assumption of the prior that the m-th component of x follows a zero-mean Gaussian distribution with variance gamma m. So when gamma m gets close to zero, x m approximates to 0 with probability 1. * SBL also assumes that the noise follows a zero-mean Gaussian distribution with variance lambda which affects the likelihood.
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γ

Prior

p(x;γ)

Posterior

p(x|y) = p(y|x)p(x)
p(y)

Evidence

p(y;γ, λ)

Likelihood

p(y|x;λ)

x

y

λ

Controlling Controlling

Maximizing the Posteriori

Maximizing the

Marginal Likelihood

γ ← ‖µ‖2√
((ΦTC)�ΦT )J(N)

λ← 1
N−K

tr
((
I(N) − [Φ]Q[Φ+]Q

)
Sy

)
Hyper-parametersNoise Variance

Sparse Representation

(Output)

Measurements

(Input)

In the framework of SBL, given lambda and gamma, * the posterior can be determined by the Bayes' theorem, thus the maximum posterior estimation of x can be obtained. * After maximizing the marginal likelihood, estimators of lambda and gamma can be obtained. After carrying out enough iterations, the most of gamma gets close to zero, which makes most of x become zero indirectly.
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Determine Φ - Assumptions 8 /16

• Source Signal: Assume the source signal is a Gaussian-modulated pulse.

• Direct Sound: Assume the direct sound has the highest amplitude and is the time-delayed and

scaled version of the source signal.

Highest Amplitude

To deal with the second problem, we assume the source signal is a Gaussian-modulated pulse, which is widely used for bandwidth-limited signals. And a Gaussian-modulated pulse is controlled by two parameters. * We also assume the direct sound has the highest amplitude in the measurements.
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• The direct sound can be extracted by using a rectangle window around the peak.

Direct Sound

• The parameters of the Gaussian-modulated pulse can be estimated by minimizing the mean

square error between the measured and reconstructed direct sound.

• The dictionary can be built with the various time-delayed source signal.

Based on the two assumptions, we use a rectangle window to extract the direct sound. * Then, the parameters of the Gaussian-modulated pulse can be estimated by minimizing the mean square error between the measured and reconstructed direct sound. * With the estimated parameters the dictionary can be built with the various time-delayed source signal.
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3. Results

Then, we gonna show the effectiveness of the proposed method with simulation and experiment results.



Sparsity - Recovered RIR 10 /16
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• For the simulated RIR measurements1, RIR-SBL shows less noise sensitiveness to the noise than

RIR-LASSO in the time interval [3,7] ms.

1The simulated noiseless RIR measurements are generated by the image method using the gpuRIR library.

Observe the recovered RIRs by the proposed RIR-SBL and the LASSO-based method LASSO-RIR. It can be clearly seen that the proposed method is more sparse around 3 to 7 ms.



Sparsity - Histogram 11 /16

P
ro

ba
bi

lit
y

Reconstructed RIR Measurements
10

0

0.1

0.2

0.3

0.4

0.5

0.5-0.5-1

RIR-SBL
RIR-LASSO

• The reconstruct RIR measurements of RIR-SBL is sparser than that of RIR-LASSO.

We also show the histograms of the reconstructed RIR measurements. It can be noted that the proposed method has more coefficients around 0, which means the proposed method is more sparsity-promoting.
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• RIR-SBL provides an improvement in the output SNR compared to RIR-LASSO.

To show the effectiveness of the proposed method in noisy conditions, we compare the output SNR between the proposed method and the LASSO-based method. We can see the proposed method has a higher SNR gain than the LASSO-based method.
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• RIR-SBL requires much less computation than RIR-LASSO.

Also, we compare the time cost between the proposed method and the LASSO-based method. Due to the fast convergence of SBL, the proposed method has much less time cost than the LASSO-based method.



Real-World Data Processing 14 /16

• For the real-world RIR measurements2, RIR-SBL performs better in noise reduction.

2The real-world RIR measurements are taken from the acoustic characterization of environments (ACE) database.

In real-world data processing, the proposed method also shows higher performance in sparsity-promoting than the LASSO-based method. It can be seen that the proposed method can greatly reduce the noise.



Real-World Data Processing 15 /16

P
ro

ba
bi

lit
y

Reconstructed RIR Measurements

RIR-SBL

10
0

0.1

0.2

0.3

0.4

0.5

0.5-0.5-1

RIR-LASSO

• RIR-SBL is more sparse-promoting than RIR-LASSO in real-world RIR processing.

The same conclusion can be drawn from the histogram of the recovered real-world RIR measurement.



4. Conclusions

Finally, I would like to give a summary of the proposed method.



Conclusions 16 /16

• The proposed RIR-SBL works well in noisy conditions and can improve the output SNR.

• RIR-SBL is computationally efficient.

• RIR-SBL can effectively exploit the sparse structure of the early part of RIRs to promote the spar-

sity of the model.

The proposed RIR-SBL works well in noisy conditions and can improve the output SNR. * And RIR-SBL is computationally efficient due to its fast convergence. * It has been shown that RIR-SBL can effectively exploit the sparse structure of the early part of RIRs to promote the sparsity of the model.



Conclusions 16 /16

• The proposed RIR-SBL works well in noisy conditions and can improve the output SNR.

• RIR-SBL is computationally efficient.

• RIR-SBL can effectively exploit the sparse structure of the early part of RIRs to promote the spar-

sity of the model.

The proposed RIR-SBL works well in noisy conditions and can improve the output SNR. * And RIR-SBL is computationally efficient due to its fast convergence. * It has been shown that RIR-SBL can effectively exploit the sparse structure of the early part of RIRs to promote the sparsity of the model.



Conclusions 16 /16

• The proposed RIR-SBL works well in noisy conditions and can improve the output SNR.

• RIR-SBL is computationally efficient.

• RIR-SBL can effectively exploit the sparse structure of the early part of RIRs to promote the spar-

sity of the model.

The proposed RIR-SBL works well in noisy conditions and can improve the output SNR. * And RIR-SBL is computationally efficient due to its fast convergence. * It has been shown that RIR-SBL can effectively exploit the sparse structure of the early part of RIRs to promote the sparsity of the model.



Thank You!

Thank You for your time!
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