

On Synchronization of Wireless Acoustic Sensor Networks in the Presence of Time-varying Sampling Rate Offsets and Speaker Changes

Tobias Gburrek, Joerg Schmalenstroeer, Reinhold Haeb-Umbach

Department of Communications Engineering – Paderborn University

Scenario

- Independent analog-digital converters (ADCs)
 - Varying frequencies of the oscillators driving the ADCs \Rightarrow Sampling rate offset (SRO)
 - ► Varying recording start ⇒ Sampling time offset (STO)
- Previous works: Constant SRO and single fixed source positions
- Here: Time-varying SRO and multiple source positions

Time-varying SRO

- Transient case: Temperature changes, ...
- Steady state fluctuations: Supply voltage changes, ...

Effect of SRO and STO

- Perfect synchronization (STO T₁₂=0s; SRO ε₁₂[ℓ]=0ppm): Time difference of arrival (TDOA) corresponds to time difference of flight (TDOF)
- $\bullet \ \mathsf{STO} \to \mathsf{Constant} \ \mathsf{offset}$
- Effect of SRO accumulates over time \rightarrow "Ramps"

Effect of SRO and STO

- Perfect synchronization (STO T₁₂=0s; SRO ε₁₂[ℓ]=0ppm): Time difference of arrival (TDOA) corresponds to time difference of flight (TDOF)
- STO \rightarrow Constant offset
- Effect of SRO accumulates over time \rightarrow "Ramps"

Effect of SRO and STO

- Perfect synchronization (STO T₁₂=0s; SRO ε₁₂[ℓ]=0ppm): Time difference of arrival (TDOA) corresponds to time difference of flight (TDOF)
- STO \rightarrow Constant offset
- Effect of SRO accumulates over time \rightarrow "Ramps"

Dynamic Weighted Average Coherence Drift (DWACD)

- Build upon the online weighted average coherence drift (WACD) method [1]
 - Product of consecutive coherence functions: $P_{\Gamma}(\ell, k) = \Gamma_{12}(\ell, k) \cdot \Gamma_{12}^{*}(\ell \ell_d, k)$
 - Under the following conditions:
 - Source position is the same in ℓ -th frame and $(\ell \ell_d)$ -th frame
 - SRO is close to zero

it holds [1]: $\angle P_{\Gamma}(\ell, k) \propto \varepsilon_{12}[\ell]$

- Handle time-varying SROs: $\bar{P}_{\Gamma}(\ell, k) = \alpha \cdot \bar{P}_{\Gamma}(\ell 1, k) + (1 \alpha) \cdot P_{\Gamma}(\ell, k)$
- Handle source position changes: Reduce temporal context used to calculate the coherence product P_Γ(ℓ, k)
- Generalized cross correlation based SRO estimation from avg. coherence product $\bar{P}_{\Gamma}(\ell,k)$
- Use current SRO estimate to resample the next signal frame for coherence estimation

[1] A. Chinaev et al., "Online Estimation of Sampling Rate Offsets in Wireless Acoustic Sensor Networks with Packet Loss,"

STO Estimation

- Goal: Compensate for STO such that synchronized signals correctly represent the time of flight (TOF) from source position to microphone position
- Principle: Align TDOA with TDOF
 - TDOA after compensating for SRO: $\tau_{12}[\ell] = \underbrace{(d_2[\ell] d_1[\ell])/c \cdot f_s}_{\text{TDOF}} \underbrace{(T_2 T_1) \cdot f_s}_{\tau_{12}^{\text{STO}}}$
 - \blacktriangleright Estimated source-microphone distances [2] \rightarrow TDOF estimates

[2] T. Gburrek et al., "On source-microphone distance estimation using convolutional recurrent neural networks"

STO Estimation

- Goal: Compensate for STO such that synchronized signals correctly represent the time of flight (TOF) from source position to microphone position
- Principle: Align TDOA with TDOF
 - TDOA after compensating for SRO: $\tau_{12}[\ell] = \underbrace{(d_2[\ell] d_1[\ell])/c \cdot f_s}_{\text{TDOF}} \underbrace{(T_2 T_1) \cdot f_s}_{\tau_{12}^{\text{STO}}}$
 - Estimated source-microphone distances [2] \rightarrow TDOF estimates

[2] T. Gburrek et al., "On source-microphone distance estimation using convolutional recurrent neural networks"

 τ_{12}^{STO}

STO Estimation

• Goal: Compensate for STO such that synchronized signals correctly represent the time of flight (TOF) from source position to microphone position

TDOF

- Principle: Align TDOA with TDOF
 - ► TDOA after compensating for SRO: $\tau_{12}[\ell] = (d_2[\ell] d_1[\ell])/c \cdot f_s (T_2 T_1) \cdot f_s$
 - \blacktriangleright Estimated source-microphone distances [2] \rightarrow TDOF estimates

[2] T. Gburrek et al., "On source-microphone distance estimation using convolutional recurrent neural networks"

Experiments - Data Set

- 100 simulated acoustic sensor networks with 4 nodes
- Pair-wise SRO and STO estimation (first node as reference)
- 5 min long recordings
 - Image-source method for room impulse response simulation
 - Random number of positions M
 - At each position: up to 4 utterances from the TIMIT data base as source signal
 - Speech pauses with a length between 0.5 s and 2 s
 - Sensor noise: average SNR value of 30 dB at a source-node distance of 3.2 m
- Simulation of asynchronous sampling:
 - ► STO between −1s and 1s
 - ► Steady state SRO between −100 ppm and 100 ppm
 - Steady state standard deviation of the SRO of 1.25 ppm
 - STFT-resampling method for SRO simulation

Comparison of SRO Estimators

	SRO	Position	Method	avg. RMSE($arepsilon$) in ppm	avg. $RMSE(au^{SRO})$ in samples
Setup-1	Constant	Fixed	Online WACD DXCP-PhaT [3] DWACD	0.21 0.15 0.40	0.14 0.36 0.15
Setup-2	Varying	Fixed	Online WACD DXCP-PhaT DWACD	0.63 0.66 0.51	0.73 0.97 1.10
Setup-3	Varying		Online WACD DXCP-PhaT DXCP-PhaT ₈ DWACD	2.80 22.42 1.28 0.64	3.25 16.61 2.81 0.32

[3] A. Chinaev et al., "Double-Cross-Correlation Processing for Blind Sampling-Rate and Time-Offset Estimation"

T. Gburrek, J. Schmalenstroeer, R. Haeb-Umbach On Synchronization of Wireless Acoustic Sensor Networks in the Presence of Time-varying Sampling Rate Offsets and Speaker Changes 7 / 9

Comparison of SRO Estimators

	SRO	Position	Method	avg. RMSE(ε) in ppm	avg. $RMSE(au^{SRO})$ in samples
Setup-1	Constant	Fixed	Online WACD DXCP-PhaT [3] DWACD	0.21 0.15 0.40	0.14 0.36 0.15
Setup-2	Varying	Fixed	Online WACD DXCP-PhaT DWACD	0.63 0.66 0.51	0.73 0.97 0.32
Setup-3	Varying	Changing	Online WACD DXCP-PhaT DXCP-PhaT ₈ DWACD	2.80 22.42 1.28 0.64	3.25 16.61 2.81 0.32

[3] A. Chinaev et al., "Double-Cross-Correlation Processing for Blind Sampling-Rate and Time-Offset Estimation"

T. Gburrek, J. Schmalenstroeer, R. Haeb-Umbach On Synchronization of Wireless Acoustic Sensor Networks in the Presence of Time-varying Sampling Rate Offsets and Speaker Changes 7 / 9

Comparison of SRO Estimators

	SRO	Position	Method	avg. RMSE(ε) in ppm	avg. $RMSE(au^{SRO})$ in samples
Setup-1	Constant	Fixed	Online WACD DXCP-PhaT [3] DWACD	0.21 0.15 0.40	0.14 0.36 0.15
Setup-2	Varying	Fixed	Online WACD DXCP-PhaT DWACD	0.63 0.66 0.51	0.73 0.97 0.32
Setup-3	Varying	Changing	Online WACD DXCP-PhaT DXCP-PhaT ₈ DWACD	2.80 22.42 1.28 0.64	3.25 16.61 2.81 0.32

[3] A. Chinaev et al., "Double-Cross-Correlation Processing for Blind Sampling-Rate and Time-Offset Estimation"

T. Gburrek, J. Schmalenstroeer, R. Haeb-Umbach On Synchronization of Wireless Acoustic Sensor Networks in the Presence of Time-varying Sampling Rate Offsets and Speaker Changes 7 / 9

STO Estimation Performance

- Scenario: Time-varying SROs and source position changes
- SRO estimation via DWACD method
 - Adaptation of our online WACD method to dynamic scenario
- STO estimation method
 - Synchronization which reflects the physical TOFs
 - Usage of source-microphone distance estimates as support information
- Open source toolbox: https://github.com/fgnt/paderwasn
- Questions?: gburrek@nt.uni-paderborn.de
- Poster: Friday, 13 May, 20:00 20:45 (AUD-31: Multichannel Processing)