OPTIMIZING LATENT SPACE DIRECTIONS FOR GAN-BASED LOCAL IMAGE EDITING
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Semantic Image Editing requires prior knowledge
of high-level concepts.
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Generative Adversarial Networks (GANSs) learn a
mapping from a low-dimensional latent space to
the image domain (prior knowledge).

Previous works find meaningful directions in
GAN'’s latent space to perform high-level image

editing, but they fail to perform localized seman-
tic editing.

Contributions

e A novel objective function for finding Locally
Effective Latent Space Direction (LELSD)
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Localization Score measures the ratio of change inside the mask

e GAN architecture and dataset-agnostic
e Fast training and convergence
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e Editing any object/part

e Layer-wise editing for StyleGAN generators

 Multiple semantic edits for each object/part a reqularization term
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To find multiple directions for editing the same semantic we add

to the objective to encourage diversity
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Layer-wise Edltlng
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