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Summary
Estimation of a delay between two signals is a common problem and particularly chal-
lenging when the delay is non-stationary. Our proposed solution is based on an all-pass
filter framework and an adaptive filtering algorithm with an LMS style update that es-
timates the delay from the filter coefficients. We validate the filter on synthetic data
demonstrating that it is both accurate and capable of tracking time-varying delays.

Delay Estimation
1. Fourier Shift Theorem
Constant delay =⇒ Multiplication by complex exponential in frequency domain
# Equivalent to filtering with filter h with frequency response [1]:

H(ω) = e−jτω ←→ All-Pass Filter

2. Rational Representation of All-Pass Filter
The (2π)-periodic frequency response of any digital all-pass filter can be expressed as:

H(ω) =
P
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)
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Linearise filtering: x(n−τ ) = h(n)∗x(n) ⇐⇒ p(−n)∗x(n−τ ) = p(n)∗x(n)

) nh(=

All-Pass

*

Signal,Delayed Signal, x(n-τ) x(n)

Filter

) np(=

Forward

*

Signal,Delayed Signal, x(n-τ) x(n)Filter

) -np(

Backward

*

Filter

3. Filter with Finite Support
Filter response can be described by:

FIR filter with finite support k ∈ [0, K] =⇒ p(k) =

{

ak, 0 ≤ k ≤ K

0, otherwise

p(n) ∗ x(n) =

K
∑

k=0

akx(n− k) #

K
∑

k=0

akx(n + k − τ ) =

K
∑

k=0

akx(n− k)

Problem becomes estimating the filter coefficients {ak}k=0,...,K

4. Extracting the Delay
K defines the maximum delay which can be estimated by the filter
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Our Approach

Assume two spatially separated sensors
both receiving the same signal but with
a delay between them

Signal Delayed Signal

Time Delay

Time

At sample time n, sensor 1 receives x(n) and sensor 2 receives x(n− τ )

Equivalent to: a0 = 1 # x(n−τ )− x(n) =

K
∑

k=1

akx(n− k)−

K
∑

k=1

akx(n+k−τ )

= xT
−(n)a− xT

+(n− τ )a

a = [a1, . . . , aK]
T

x−(n) =
[

x(n−1), . . . , x(n−K)
]T

←→ backward vector of sensor 1

x+(n− τ ) =
[

x(n+1−τ ), . . . , x(n+K−τ )
]T
←→ forward vector of sensor 2

Express samples from each sensor as a linear predictor of samples from the other sensor

x(n) = xT
+(n− τ )a x(n− τ ) = xT

−(n)a

Adaptive All-Pass Filter
1. Definition
Difference between the noisy outputs of the optimum filter

Desired response: d(n) = xT
−(n)a + η1(n)− xT

+(n− τ )a− η2(n)

η1(n), η2(n) =⇒ zero mean i.i.d. noise sources with variance σ2
η

Current estimate of the true filter coefficients a # w(n) = [w1, w2, . . . , wK]
T

Filter output: y(n) =
[

xT
−(n)− xT

+(n− τ )
]

w(n)

Our problem =⇒ minimize the error between measured samples, d(n) and estimates
obtained from filter coefficients, y(n)

e(n)= d(n)−y(n)=
[

xT
−(n)−x

T
+(n−τ )

]

a−
[

xT
−(n)−x

T
+(n−τ )

]

w(n)+η1(n)−η2(n)

2. Update
Using steepest descent with learning rate µ and cost function J (n) = |e(n)|2

w(n + 1) = w(n)− µ∇J (n)
∣

∣

w=w(n)
= w(n) + 2µe(n)

[

xT
−(n)− xT

+(n− τ )
]

Define residuals # r(n) = x−(n)− x+(n− τ ) and η(n) = η1(n)− η2(n)

e(n) = rT (n)a− rT (n)w(n) + η(n)

w(n + 1) = w(n) + 2µe(n)rT (n)

Gives adaptive all-pass filter in the form of the standard LMS algorithm for input r(n)

3. Convergence
For convergence in the mean square the bound on the learning rate is given by:

0 < µ <
1

3tr[R]
where tr[·] is the trace of the matrix

Note the correlation R =
[

x−(n)− x+(n−τ )
][

x−(n)− x+(n−τ )
]T

is based on the
difference between the forward and backward vectors from the two sensors.

Normalised Adaptive All-Pass Filter

tr[R] = rT (n)r(n) =
K
∑

i=1

r2(n−i) and r(n−i) = x(n−i)−x(n+i−τ )

Leads to bound on the learning rate: 0 < µ <
1

3‖x−(n)− x+(n− τ )‖22

NAAP filter: w(n + 1) = w(n) +
ρ

‖x−(n)− x+(n− τ )‖22 + ε
e(n)r(n)

Results
1. Constant Delay
Estimation of a constant delay of τ (n) = 5.85 samples
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Figure 1: Comparison of the performance of NAAP (ρ = 0.08), the ETDE [2] (µ = 0.04) and Sun
algorithm [3] (µ = 0.02), insets: the first 400 samples

2. Tracking Performance
Estimation of a piecewise constant delay signal with two step changes for two scenarios
both with an initial delay of τ = 3.85 samples and SNRs of 5dB, 10dB, 20dB and
30dB:

‘small’ step changes:Changes of +0.75 and −1.50 samples

‘large’ step changes:Changes of +2.50 and −5.00 samples

Table 1: Average mean absolute delay errors for different SNR values

Small Step Change Large Step Change

SNR (dB) 5 10 20 30 5 10 20 30

NAAP (ρ = 0.01) 0.496 0.313 0.153 0.124 0.528 0.337 0.228 0.219

ETDE (µ = 0.02) 0.112 0.074 0.052 0.047 1.805 1.700 1.661 1.663

Sun (µ = 0.008) 0.249 0.235 0.235 0.234 0.243 0.230 0.233 0.233
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Figure 2: Comparison of the performance of the NAAP (ρ = 0.01), the ETDE (µ = 0.02) and Sun
algorithm (µ = 0.008) for the large step change scenario with SNR=20dB

Conclusions
• Formulated a LMS style algorithm to estimate the coefficients of the FIR filter

•Time delay estimated using a direct expression based on the filter coefficients

•Algorithm provides a more versatile estimate than alternative methods.


