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Approximating a matrix by a product of sparse factors

Given a matrix Z and J > 2, find sparse factors X¥), ... X1 such that

Z ~ XUxU-1  x@),
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Approximating a matrix by a product of sparse factors

Given a matrix Z and J > 2, find sparse factors X¥), ... X1 such that

Z ~ XUxU-1  x@),

Application (Large-scale inverse problem) J

Reduce time/memory complexity: find x such that y = Zx.
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Approximating a matrix by a product of sparse factors

Given a matrix Z and J > 2, find sparse factors X¥), ... X1 such that

Z ~ XUxU-1  x@),

Application (Large-scale inverse problem)
Reduce time/memory complexity: find x such that y = (X) ... X(1))x. J
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Approximating a matrix by a product of sparse factors

Problem formulation

2
Y X(J)X(J_l)...X(l)HF, such that {X1, are sparse.

min
X, X()

Choices for sparsity constraint:
O Classical sparsity patterns: k-sparsity by column and/or by row
@ Fixed-support constraint: supp(X()) C S() for 1 =1,..., J.
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Approximating a matrix by a product of sparse factors

Problem formulation

2
Z— X(J)X(J_l)...X(l)HF, such that {X(}, are sparse.

min
XM, X

Choices for sparsity constraint:
O Classical sparsity patterns: k-sparsity by column and/or by row
@ Fixed-support constraint: supp(X()) C S() for 1 =1,..., J.

A difficult problem
@ Sparse coding is NP-hard [Foucart et al. 2013].
o Fixed-support setting is NP-hard for J = 2 factors [Le et al. 2021].
@ Gradient-based methods [Le Magoarou et al. 2016] lack guarantees.
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Focus on fixed-support constraint

When is the problem well-posed and tractable? (case with J = 2)
@ Conditions for uniqueness of the solution [Zheng et al. 2022]
@ Conditions for achieving global optimality [Le et al. 2021]
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Focus on fixed-support constraint

When is the problem well-posed and tractable? (case with J = 2)
@ Conditions for uniqueness of the solution [Zheng et al. 2022]
@ Conditions for achieving global optimality [Le et al. 2021]

— We study a fixed-support constraint (J > 2) satisfying such conditions.

i
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Figure: Butterfly structure: supp(X)) C Sl(f;) =y @[11]® byt

The butterfly structure is common to many fast transforms (e.g. DFT).
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Focus on fixed-support constraint

When is the problem well-posed and tractable? (case with J = 2)
@ Conditions for uniqueness of the solution [Zheng et al. 2022]
@ Conditions for achieving global optimality [Le et al. 2021]
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— We study a fixed-support constraint (J > 2) satisfying such conditions.

I
u I =
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Figure: Butterfly structure: supp(X?) C Sl(f;) =y @[11]® byt

The butterfly structure is common to many fast transforms (e.g. DFT).

Main contribution

An efficient hierarchical algorithm to approximate any matrix by a
product of butterfly factors.
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Hierarchical factorization algorithm
Let Z := XMWXE)X@XD) such that:

supp(X@W) €

supp(X(?) C R
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Hierarchical factorization algorithm
Let Z := XMWXE)X@XD) such that:

supp(X@W) €

supp(X(?) C R

supp(X®) €

supp(X(D) CHEEHE

XOXExXE@x)
X ) X®x@)x ()
X 3) X (2)x (1)
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Hierarchical factorization algorithm

Let Z := XAXCX@XD) sych that: XOXEXEXM
supp(X@) C supp(X®)) C X® XBx@x®)
X3 X 2)x (1)
supp(X(?) C R supp(X(D) CHEEHE
X (2) xX (1)

Le, Zheng, Riccietti, Gribonval Fast learning of fast transforms May 2022 3/10



Hierarchical factorization algorithm

Let Z := XHXG)IXP)X®) such that: XOXEX@XO
supp(X@W) C supp(X®)) C X® X@xX@x M
X3 X 2)x (1)
supp(X(?) C R supp(X(D) CHEEHE
X(2) X (1)

How to recover the partial products?
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Hierarchical factorization algorithm
Let Z := XMWXE)X@XD) such that: XOXEX@XD

supp(X@W) €

supp(X(?) C R

supp(X®) €

X ) XG)x@)x (1)

X (3) X 2)x (1)

supp(X(D) CHEEHE

X (2) X (1)

How to recover the partial products? — use their known supports

Lemma (Supports of the partial products)

supp(X") C

=8

supp(X(X@X (1) = Sy/s7'sy
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Hierarchical factorization algorithm

Let Z := XHXG)IXP)X®) such that: XOXEX@XO
supp(X¥) C supp(X®)) C X® XEX@X M
X3 X 2)x (1)
supp(X(?) C R supp(X(D) CHEEHE
X(2) X (1)

How to recover the partial products? — use their known supports

Lemma (Supports of the partial products)

3)q(2) gl
= Sl()f) Sl(sf)st(zf)

supp(X™¥) ¢ = Sl(é) supp(X®) XX M) C

Two-layer fixed-support problem:

min | Z — ABJZ, s.t.supp(A) € S{, supp(B) C SEYSIFSLY (1)
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Two-layer fixed-support sparse matrix factorization
min | Z — ABJZ, s.t.supp(A) € S{Y, supp(B) C SEYSIFSLY (1)
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Two-layer fixed-support sparse matrix factorization
min | Z — ABJZ, s.t.supp(A) € S{Y, supp(B) C SEYSIFSLY (1)

FaCt: AB = ZIN:I AO,iBi,.-
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Two-layer fixed-support sparse matrix factorization
min | Z — ABJZ, s.t.supp(A) € S{Y, supp(B) C SEYSIFSLY (1)

Fact: AB ="V A, B;..

Constraint on the pair of factors

supp(A) C =S

a2l
supp(B) C Sl()f) S‘(bf)sl()f)
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Two-layer fixed-support sparse matrix factorization
min | Z — ABJZ, s.t.supp(A) € S{Y, supp(B) C SEYSIFSLY (1)

FaCt: AB = ZIN:I AO,I'BI',.-

Constraint on the pair of factors | Constraint on the rank-one matrices
supp(Ae1B1s) C =&
4
supp(A) =Sy
supp(Ae2B2.) C L =5
3 2 1
supp(B) C Sue Sue Sir
supp(Ae nBy,o) C i = Sy
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Two-layer fixed-support sparse matrix factorization
min |Z — AB|Z, s.t.supp(A)  S{Y, supp(B) C SLSPSE (1)

Constraint on the rank-one matrices

supp(Ae,1B1s) C =85

supp(Ae 2Ba) supp(Ae vByo) C =Sy

N
I
N

Theorem ([Le et al. 2021; Zheng et al. 2022])

The rank-one matrices have pairwise disjoint supports. Consequently,
(1) is polynomially solvable and admits an essentially unique solution.
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Two-layer fixed-support sparse matrix factorization
min |Z — AB|Z, s.t.supp(A)  S{Y, supp(B) C SLSPSE (1)

Constraint on the rank-one matrices

supp(Ae1B1.) C =85

supp(Ae, nBn,e) C =S8N

N
I
N

supp(A. 2B2 )

Theorem ([Le et al. 2021; Zheng et al. 2022])

The rank-one matrices have pairwise disjoint supports. Consequently,
(1) is polynomially solvable and admits an essentially unique solution.

Algorithm to solve (1):
@ Extract the submatrices Z5,, i =1,..., N
@ Perform best rank-one approximation for each submatrix
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Hierarchical factorization algorithm

Let Z := X®XC)X@X®) such that: XOXEXEK D
supp(X™¥) C supp(X®) C X4 X3 X@x1)
X ) X@x M
supp(X®)) C supp(X™M) C
X3 X (1)

The two-layer procedure is repeated recursively.
Lemma (Support of the partial products)

=S¢ supp(X( XX (1) ¢ = Si Sie Su

supp(X ™) ¢

The corresponding rank-one supports are pairwise disjoint.
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Hierarchical factorization algorithm

Let Z := XAXCX@XD) sych that: XOXEX@OXD)
supp(X@) C supp(X®) C X ) XG)xX@)x@)
X3 X 2)x (@)
supp(X®) C supp(XW) C
X2 xX (1)

The two-layer procedure is repeated recursively.

Lemma (Support of the partial products)

supp(X®) C =S¢ supp(XX (M) Sl

The corresponding rank-one supports are pairwise disjoint.
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Hierarchical factorization algorithm

Let Z := X®XC)X@X®) such that: XOXEX@OXD)
supp(X®) C supp(X®) C X ) XG)xX@)x@)
X3 X 2)x (@)
supp(X®) C supp(XW) C
X2 X1

The two-layer procedure is repeated recursively.

Lemma (Support of the partial products)

1
_ S]E,f)

supp(X %) C supp(X ") C

The corresponding rank-one supports are pairwise disjoint.
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Hierarchical factorization algorithm

Let Z := X®XC)X@X®) such that: XOXEX@OXD)
supp(X@) C supp(X®) C XG)xX@)x@)
X 2)x (@)
supp(X®)) € supp(X(1) € / \

The two-layer procedure is repeated recursively.

Lemma (Support of the partial products)

supp(X?)) C

supp(XV)) C

The corresponding rank-one supports are pairwise disjoint.

The butterfly factors {X'"/}7_, are recovered (up to scaling ambiguities)
from the product Z.
May 2022 5/10



Theoretical guarantees

The algorithm works for any number of factors and any binary tree.

XOXB K@ XD XHOXB XK@ XD
X @) XB)x@)x (1) / \
/ \ XWX ) XXM
X®) X@x(1) / \ / \
X XM x4 X3 X x1)
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Theoretical guarantees

The algorithm works for any number of factors and any binary tree.

)9(&%)((1) X@xG)x@)x 1)
X @) XG)x@x M / \
/ \ XWX X@xWO
X®) X@x(1) / \ / \
X® X X@) X3 X(@) X

Theorem (Exact recovery guarantees [Zheng et al. 2022])

Except for trivial degeneracies, every tuple (X(Z)) _, satisfying the
butterfly constraint can be reconstructed by the algorithm from
=X XD (up to unavoidable scaling ambiguities).
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Theoretical guarantees

The algorithm works for any number of factors and any binary tree.

y@gxm X@xG)x@)x 1)
X @) XG)x@x M / \
/ \ XWX X@xWO
X®) X@x(1) / \ / \
xX((2) xX (1) X (4) X(3) X((2) xX (1)

Theorem (Exact recovery guarantees [Zheng et al. 2022])

Except for trivial degeneracies, every tuple (X(Z)) _, satisfying the
butterfly constraint can be reconstructed by the algorithm from
=X XD (up to unavoidable scaling ambiguities).

o Complexity is O(N?) for both trees.

@ We can use the algorithm in the non-exact setting.
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Faster and more accurate in the noiseless setting

Approximation of the DFT matrix by a product of J = 9 butterfly factors:

107 Gradient-based
100 4
g
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10 X Balanced hierarchical
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Running time (s)
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Also more robust in the noisy setting

Approximation of Z = DFTy 4+ oW by a product of J = 9 butterfly
factors:

10°
—=- Noise norm = [loW||
B Daoetal 2019
X Balanced hierarchical
5 ® Unbalanced hierarchical
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Our method scales with the matrix size

Approximation of the (noisy) DFT matrix of size N = 27 by a product of J
butterfly factors:

—e— Balanced tree
103 4 —=— Unbalanced tree

Running time (s)
=
o
2

4 8 16 32 64 128 256 512 102420484096 8192
Size N
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Conclusion and perspectives

Hierarchical algorithm: O(N?)

TN

7 € RNXN (dense) Z .= Xx(-1  x@1)
Storage: O(N?) Storage: O(N log N)
Cost for evaluation: (’)(NQ) Cost for evaluation: O(N log N)
X — Zx X — Zx
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Conclusion and perspectives

Hierarchical algorithm: O(N?)

TN

7 € RNXN (dense) 7= Xx(-1 x®
Storage: O(N?) Storage: O(N log N)
Cost for evaluation: (’)(NQ) Cost for evaluation: O(N log N)
X — Zx X — Zx

Implementation in the FAuST toolbox at https://faust.inria.fr.
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Conclusion and perspectives

Hierarchical algorithm: O(N?)

TN

7, € RVXN (dense) 7= Xx(-1 x®
Storage: O(N?) Storage: O(N log N)
Cost for evaluation: (’)(NQ) Cost for evaluation: O(N log N)
X — Zx X — Zx

Implementation in the FAuST toolbox at https://faust.inria.fr.

Future work
@ Application in dictionary learning, sparse neural network training, ...
o Stability properties of the hierarchical algorithm
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Thank you for your attention!

To know more:

[] Q-T. Le, E. Riccietti, and R. Gribonval (2022)
Spurious Valleys, Spurious Minima and NP-hardness of Sparse Matrix
Factorization With Fixed Support
arXiv preprint, arXiv:2112.00386.

[ L. Zheng, E. Riccietti, and R. Gribonval (2022)
Efficient Identification of Butterfly Sparse Matrix Factorizations
arXiv preprint, arXiv:2110.01235.
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