A E 0 AV C 0 o o - o o A (1l €

i

OMPpPre ) 1700

BOWE a0 aAC o 21Nqg bac anyang vieng ongsnenqg Liang

are 2 C - D/0g - c z “eng ong Laboratc i : z
Introduction Architecture To verify the effectiveness of ID for reducing spatial
redundancies, we visualize the latent codes and required
Recen’rly, learned image compression methods bits of different architectures, including convolution,
have shown their outstanding rate-distortion '"”*g*’ @J % - Adder-BN and the proposed Adder-ID. It is obvious that
performance when compared to traditional ' the conventional Adder-BN cannot effectively reduce
£ cononion @ 1xicom spatial redundancies, while the proposed Adder-ID is

frameworks. Although numerous progress has
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address this problem, we propose AdderIC,  ccomrucieim

able to efficiently capture useful information and
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been made in learned image compression, the
computation cost is still at a high level. To

ﬂ PixelShuffle

significantly reduce pixel-wise redundancies, which is
similar to the convolution layer.

ID

Deconvolution

. o R e To confirm the efficiency of AIP structure, we visualize
which utilizes adder neural networks (AdderNet) the output feature maps of different upsampling
fo construct an image compression framework. Experiment structures in Fig. 6. The results show that the
According to the characteristics of image transposed adder layer can easily cause checkerboard

artifacts, which would lead fo poor reconstruction
quality. By contrast, the proposed AIP structure as well

compression, we introduce several strategies fo -
improve the performance of AdderNet in this
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CNN

as the transposed convolution can avoid them and

field. . e .
: D s — - maintain the details of the original images effectively.
MEthOdS Fig. 4. PSNRonR;z)(;!;:Dataset Fig. 5. PSNRongE;gl)Tp;st.Dataset At las'l', we Compare the Proposed AdderIC with its CNN
. . counterpart in aspects of rate-distortion performance,
O First, We introduce Haar Wavelet Transform E ' ' ol th ': y o P N
, L - along with compurarion costT and energy consumption.
(HWT) to enable AdderIC to learn high- L F o [ BT DRl - . . .
.= . - |- From Flg 6, Flg 4 and Flg 5, We can See that our
| " 11 . ]
frequency information efficiently: . e e AdderIC model shows comparable performance to CNN-
TEEE N S B . . . .
n In addl.hon' |mPl|C|-I- dQCOnVOIUfIOn (ID) W'.I.h Fig. 6(a)Visualizat.ion(?3rcheckerboz::(:artifacts corglp)arison 5 |. & l I based arChlll-eC'l-ure' and > be.l"l-er .I-han O'I-her AdderNe.l-
. . . (’a)istileinputhnage,while(b),(c)and(‘d)denotcoutputfea: R A structures. BQSides, we omit the ID and k=1 convolution
a kef‘nel SlZe OF ]. IS CldO Pll'ed 'I'O reduce SPleICll ture maps of the transposed convolution layer, the transposed | | | . .
. adder layer and the proposed AIP structure, respectively. (@) Convolution — (b) Adder-BX (©) AdderID due to their low ComPU'I'Cl'I'lon COSt and compare the
r e dun d an C' e S; Fig. 3. Visualization of latent codes and redundancies. “-. l. 1-. FLOP d .l- b .I- Add IC
multiplication s and energy cost between er
Table 1. #Mul. FLOPs and energy cost of different networks. and its CNN counterpart in Table 1. The results show
& Furthermore, we develop a novel Adder-ID- T Model  ONN__ AdderlC  Reduction o rod o " .l' oo b
. . a er reauces e mulriplicarion S
PixelShuffle (AIP) upsampling structure to Multiplication FLOPs  1.303G ~ 0255G  80.43% | . PR i
remove checkerboard artifacts in the decoder Energy Cost(p/)  5994G  4.193G  30.05% approximately 80% and energy consumption by 30%.




