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ABSTRACT

The projection of sample measurements onto a reconstruction
space represented by a basis on a regular grid is a powerful
and simple approach to estimate a probability density func-
tion. In this paper, we focus on Riesz bases and propose a
projection operator that, in contrast to previous works, guar-
antees the bona fide properties for the estimate, namely, non-
negativity and total probability mass 1. Our bona fide pro-
jection is defined as a convex problem. We propose solution
techniques and evaluate them. Results suggest an improved
performance, specifically in circumstances prone to rippling
effects.

Index Terms— Non-negativity, Riesz bases, generalized
sampling, convex optimization.

1. INTRODUCTION

The estimation of probability density functions (pdf) pervades
most problems in statistics and machine learning. For in-
stance, the Bayes classifier achieves optimal classification,
but requires an estimate of the pdf conditioned to each class.
Similarly, any regression problem can be trivially solved pro-
vided a good estimate of the joint pdf between outcomes and
covariates is available. Practically, pdf estimation remains
one of the most common tools in data science [1–3], with
its basic version (a histogram) being the entry point to any
exploratory data analysis. As a result, the field remains active
despite its long history [4–7].

The mathematical structure of the problem of pdf estima-
tion is very similar to that of image reconstruction for imag-
ing modalities that operate in the limited-photon regime, e.g.,
the construction of a sinogram from positron emission tomog-
raphy measurements. From the observation of the empiri-
cal measure p� generated by N independent identically dis-
tributed samples xn ⇠ X of a continuous random variable X ,
with

p� =
1

N

NX

n=1

�xn , (1)

one aims to recover the probability density function f : R !
R+, of which we assume f 2 L2(R).
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Fig. 1. Projection onto the space of uniform splines of degree 3 of
the empirical estimate p� in (1) for h = 0.9 and N = 100 samples of
a standard normal random variable. The projection is implemented
by a generalized sampling system composed of a continuous filter g
and a digital correction filter q. The resulting estimate is not a bona
fide pdf, which is the problem we address in this paper.

In [8], our group proposed a pdf estimator that relies on
the theory of generalized sampling using Riesz bases. How-
ever, in general, the resulting estimates are not bona fide pdfs.
Although they integrate to 1, they are not guaranteed to be
nonnegative (see Fig. 1). Recently, Cui et al. [5, 6] rediscov-
ered the same estimator and studied it in much detail, but did
not provide a technique to generate bona fide estimates. In
this paper, we present a simple technique based on convex
optimization to obtain better estimates that are bona fide pdfs
within the same framework.

2. SAMPLING AND RECONSTRUCTION

A classical problem in signal processing is that of the sam-
pling and reconstruction of continuous-domain signals [9,10].
In short, a function f 2 L2(R) is observed through a filter
with impulse response g 2 L2(R) and sampled regularly at
x = kh for k 2 Z. The problem is then to obtain the best ap-
proximation f̃ 2 L2(R) from the collected samples ca 2 `2,

Find the code at: github.com/poldap/rpde
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Generalised sampling / Approximation in shift-invariant spaces

Requirements for Vs

Good approximation properties

Discrete (finite/countable)

Some sort of shift invariance

Vs =

(
f̃ =

X

k2Z
cs[k]'

s
k : cs 2 `2

)
⇢ L2(R)

Error order controlled by 's
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Shift invariant spaces

with 's
k = 's( · � k)

Generalised sampling / Approximation in shift-invariant spaces

f 2 L2(R) f̃ 2 Vs

Vs =

(
f̃ =

X

k2Z
cs[k]'

s
k : cs 2 `2

)
⇢ L2(R)

Error order controlled by 's

min
f̆2Vs

n
kf � f̆kL2(R)

o

) f̃ =
X

k2Z

cs[k]z }| {
h'̊s

k, fi's
k

9!'̊s 2 Vs | h'̊s
k,'

s
li = �[k � l], 8k, l 2 Z

M. Unser, "Sampling—50 Years After Shannon,"
Proc. of the IEEE (2000), 569–587
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with 's
k = 's( · � k)

but we do not need to find it!



Generalised sampling: Signal processing perspective

Real-life sampling f g • •

Fs = 1

ca[k] = hf,'a
ki

ca[k] = (g ⇤ f)(k) = hf,'a
ki where 'a(x) = g(�x)
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What we hope for:
Va = {f̃ =

P
k2Z ca[k]'

a
k : ca 2 `2} = Vs

Riesz basis conditionM. Unser and A. Aldroubi, "A General Sampling Theory for Nonideal
Acquisition Devices," IEEE TSP 42 (11) (1994), 2915–2925
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Generalised sampling: Signal processing perspective

f g • •

Fs = 1

ca[k] = hf,'a
ki

What we hope for:
Va = {f̃ =

P
k2Z ca[k]'

a
k : ca 2 `2} = Vs

Orthogonal projection (min L2)

Riesz basis condition

Consistency principle
a.k.a. measurement-reconstruction invariance

=) '̊s =
P

k2Z q[k]'
a
k

Real-life sampling
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=) cs[k] = (q ⇤ ca)[k], 8k 2 Z

where q̂(!) = 1/r̂a,s(!), with ra,s[k] = h'a
k,'

si.

hf̃ ,'a
l i =

X

k2Z
(q ⇤ ca)[k]h's

k,'
a
l i

=
X

k2Z
(q ⇤ ca)[k]ra,s[k � l]

= (ra,s ⇤ q ⇤ ca)[l] = ca[l]

= hf,'a
l i .

Generalised sampling for density estimation

p� g • •
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Histogram: 'a = '̊s = 's = �0, ra,s[k] = �1(k) = �[k] .
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'a = 's = �1, ra,s[k] = �3(k) .
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Generalised sampling for density estimation: Error characteristics
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Let f⌧ (x) , f(x � ⌧), consider
f̃ : RN ! Vs

Compromise in setting h,
statistical vs approximation
error

⌘̃2(f) =
1

h

Z h

0
E
n
kf⌧ � f̃({xn + ⌧})k2L2

o
d⌧

Closed form expressions for ⌘̃2(f)

Estimating a standard Gaussian from
103 samples, h going from 0.1 to 2.5

12

�10 �8 �6 �4 �2 0 2 4

�32

�30

�28

�26

�24

�22

�20

�18

�16

�14

�12

Discretization step 10 log10(h)

E
rr
or

⌘̃
2
(f
)
[d
B
]

Theoretical ⌘̃2(f) for n = 3

Empirical ⌘̃2(f) for n = 3

Theoretical ⌘̃2(f) for n = 2

Empirical ⌘̃2(f) for n = 2

Theoretical ⌘̃2(f) for n = 1

Empirical ⌘̃2(f) for n = 1

Theoretical ⌘̃2(f) for n = 0

Empirical ⌘̃2(f) for n = 0

'a = 's = �n

ra,s[k] = �2n+1(k)



Non-negative approximation

f 2 L2(R) f̃ 2 V +
s

V +
s is a closed convex cone in Vs (and in L2(R))

Because it is a closed convex set, the projection is unique, i.e.,

9!f̃+ 2 V +
s | kf � f̃+kL2  kf � f+kL2 , 8f+ 2 V +

s

How to find f̃+: an open problem

Vs such that 's = �n
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Non-negative approximation

f 2 L2(R) f̃ 2 V +
s

Vs such that 's = �n

How to find f̃+: an open problem

In PDF estimation, bona-fide functions

f̃+(x) � 0, 8x 2 R and
Z

f̃+(x)dx = 1

Recall : Consistency principle, a.k.a. measurement-reconstruction invariance

hf̃ ,'a
ki = hf,'a

ki, 8l 2 Z .

Proposal: Relax consistency, impose bona-fide

min
f̆2Vs

n
khf,'a

ki � hf̆ ,'a
kik22

o

such that f̆(x) � 0, 8x 2 R and

Z
f̆(x)dx = 1
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Non-negative approximation

f 2 L2(R) f̃ 2 V +
s

Proposal: Relax consistency, impose bona-fide

min
f̆2Vs

n
khf,'a

ki � hf̆ ,'a
kik22

o

such that f̆(x) � 0, 8x 2 R and

Z
f̆(x)dx = 1
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Non-negative approximation

f 2 L2(R) f̃ 2 V +
s

Proposal: Relax consistency, impose bona-fide

convex quadratic linear constraints finite dimensional for finite support f
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min
f̆2Vs

n
khf,'a

ki � hf̆ ,'a
kik22

o

such that f̆(x) � 0, 8x 2 {mhc : m 2 Z} and

Z
f̆(x)dx = 1

(
)

min
cs2`2

�
kca[k]� (ra,s ⇤ cs)[k]k22

 

such that (c"Ms [k] ⇤ 's(k/M))[q] � 0, 8q 2 Z and
X

k2Z
cs[k] = 1



Compromise in setting h,
statistical vs approximation
error

⌘̃2(f) =
1

h

Z h

0
E
n
kf⌧ � f̃({xn + ⌧})k2L2

o
d⌧

Relaxed consistency, Bona-fide PDF estimation: Error characteristics
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Estimating a standard Gaussian from
103 samples, h going from 0.8 to 1.6

Relaxed consistency, Bona-fide PDF estimation
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ra,s[k] = �7(k)

Estimating an equal mixture between
N (�3, 1) and N (3, 1) from 102 samples
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