

Motivation: Positron Emission Tomography

Background: Generalized Sampling

• $c_{\mathbf{a}}[k] = (g * f)(k) = \langle f, \varphi_k^{\mathbf{a}} \rangle$ where $\varphi_k^{\mathbf{a}}(x) = g(k - x)$ Represent f on a shift-invariant space

$$V_{\rm s} = \left\{ \tilde{f} = \sum_{k \in \mathbb{Z}} c_{\rm s}[k] \varphi_k^{\rm s} : c_{\rm s} \in \ell_2 \right\} \subset \mathcal{L}_2$$

Orthogonal projection (min L2)

If $V_{\mathbf{a}} = \{\check{f} = \sum_{k \in \mathbb{Z}} c_{\mathbf{a}}[k] \varphi_k^{\mathbf{a}} : c_{\mathbf{a}} \in \ell_2\} = V_{\mathbf{s}}$ \Rightarrow optimal c_s (L_2 -wise) can be obtained by convolution $\tilde{f} = \sum_{k \in \mathbb{Z}} c_{s}[k] \varphi_{k}^{s}$ with $c_{s}[k] = (q * c_{a})[k], \forall k \in \mathbb{Z}$

Bona-fide Riesz projections for density estimation

Pol del Aguila Pla^{1,2} and Michael Unser² ¹: CIBM Center for Biomedical Imaging, Switzerland ²: Biomedical Imaging Group, École polytechnique fédérale de Lausanne, Lausanne, Switzerland

$$\langle f, \varphi^{\mathrm{a}}_k
angle$$

 $_2(\mathbb{R})$

Measurement Consistency Principle

$$egin{aligned} &\langle ilde{f}, arphi_l^{\mathrm{a}}
angle &= \sum_{k \in \mathbb{Z}} (q * c_{\mathrm{a}})[k] \langle arphi_k^{\mathrm{s}} \ &= (r_{\mathrm{a}} * q * c_{\mathrm{s}})[l] = \end{aligned}$$

$$(a, s, q, -a)[s]$$

Bona-fide Relaxation of Consistency

$\min_{\breve{f}\in V_{\rm s}}\Big\{ $	$ \langle f, \varphi^{\mathrm{a}}_k angle$	$-\langle \breve{f},$	$\left. \varphi_k^{\mathrm{a}} \right\rangle \ _2^2 \Big\}$

such that $\check{f}(x) \ge 0, \forall x \in \mathbb{R}$ and $\check{f}(x) dx = 1$

Approximating the non-negativity constraint with a factor M interpolation

 $\min_{c_{s} \in \ell_{2}} \left\{ \|c_{a}[k] - (r_{a,s} * c_{s})[k]\|_{2}^{2} \right\}$ such that $(c_{s}^{\uparrow M}[k] * \varphi^{s}(k/M))[q] \ge 0, \forall q \in \mathbb{Z}$ and $\sum c_{\rm s}[k] = 1$ $k{\in}\mathbb{Z}$

Efficient, easy convex problem

 $_{k}^{\mathrm{s}}, arphi_{l}^{\mathrm{a}}
angle$

$$= c_{\mathbf{a}}[l] = \langle f, \varphi_l^{\mathbf{a}} \rangle,$$

 $\Leftrightarrow \hat{q}(\omega) = 1/\hat{r}_{a,s}(\omega), \text{ with } r_{a,s}[k] = \langle \varphi_k^a, \varphi^s \rangle.$

Estimating a standard Gaussian from 10^3 samples, h from 0.8 to 1.6, averaged over 120 realizations

Statistical Results

Example Estimate ----f(x)f(x) $f_+(x)$ £ 2. Estimating an equal mixture between $\mathcal{N}(-3,1)$ and

 $\mathcal{N}(3,1)$ from 10^2 samples ($arphi^{\mathrm{a}} = arphi^{\mathrm{s}} = eta_3$ and