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Feature Selection Problem

Select an important subset of features
→ enhancing the performances (classification accuracy, training time, etc)

B X∗ A X∗ A

n× d d×mn×m

Without the condition d > m, this can be applied to multiple
measurement vector (MMV) problem.

Applications: MECG, DNA microarrays, source localization, etc
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Mathematical Model and Robust Feature Selection

B = X∗A+E +O (1)

noise
outlier matrix
(column sparse)

Robust Feature Selection (RFS, Nie et al., ’10 [1]):

(P0) min
X∈X

∥B −XA∥2,1︸ ︷︷ ︸ + λ∥X∥2,1︸ ︷︷ ︸
�� ��outlier robustness

�� ��column sparsity

∥X∥2,1 :=
d∑

i=1

∥xi∥2 (sum of the column norms)

[1] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust feature selection via joint ℓ2,1-norms minimization,” in
Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1813–1821.
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Minimax Concave Function

Huber function: ϕHB
γ (x) :=

{
1
2γ

x2 if |x| ≤ γ

|x| − 1
2
γ if |x| > γ

(γ > 0)

MC function (Zhang 2010 [2], Selesnick 2017 [3])

ϕMC
γ (x) := |x| − ϕHB

γ (x) =

{
|x| − 1

2γ
x2 if |x| ≤ γ

1
2
γ if |x| > γ

(γ > 0)

Constant over [γ,+∞) → remarkable robustness against outliers
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[2] C. H. Zhang, “Nearly unbiased variable selection under minimax concave penalty,” The Annals of Statistics, vol. 38,
no. 2, pp. 894—942, 2010.
[3] I. Selesnick, “Sparse regularization via convex analysis,” IEEE Transactions on Signal Processing, vol. 65, no. 17, pp.
4481–4494, 2017.
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Key Ideas

robustness convexity of loss
mathematical tractability

(overall convexity)
Huber [4] △ ✓ ✓
Tukey [5] ✓ × ×
Proposed ✓ (weakly convex) ✓

Ideas

1. MC loss
→ Remarkable Outlier robustness due to the nonconvexity

2. The squared Frobenius norm as an additional penalty
→ Global optimality

3. Split the cost function into convex terms
→ The reformulated problem can be solved by the efficient
primal-dual splitting method
→ Scalability

[4] P. J. Huber and E. Ronchetti, Robust Statistics, JohnWiley & Sons, 2009.
[5] R. A. Maronna, et al., Robust Statistics: Theory and Methods (with R), John Wiley & Sons, 2019.
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Proposed Formulation

(P1) min
X∈X

(
ΦL(B −XA) + λ1ΦM (X) +

λ2

2
∥X∥2F

)

▶ ΦL(Y ) := ∥Y ∥2,1 −minZ∈Y
(
∥Z∥2,1 + 1

2∥Y −Z∥2L
)
, Y ∈ Y

(∥Y ∥L := ∥L1/2Y ∥F)
▶ ΦM (X) :=∥X∥2,1 −minΞ∈X

(
∥Ξ∥2,1 + 1

2∥X −Ξ∥2M
)
, X ∈ X

▶ LB := Bdiag(l1, . . . , lm), li > 0, ∀i = 1, . . . ,m

▶ MX := Xdiag(µ1, . . . , µn), µj > 0, ∀j = 1, . . . , n

▶ λ1 ≥ 0

▶ λ2 ≥ 0

ΦL and ΦM are slight extensions of the MC function to group-sparse
matrices

K. Suzuki, M. Yukawa (Keio Univ.) ROBUST RECOVERY WITH MC LOSS May 9, 2022 9 / 24



Flow of the Derivation

(P1) min
X∈X

(
ΦL(B −XA) + λ1ΦM (X) +

λ2

2
∥X∥2F

)

(P′
1)

Primal-dual splitting method
(Condat ’13)

Moreau’s decomposition

Let f ∈ Γ0(X ). Then,
1f + 1f∗ =

1

2
∥ · ∥2F, (2)

where the Moreau envelope of f of index γ is

γf : X 7→ min
Y ∈Y

{
f(Y ) +

1

2γ
∥X − Y ∥2F

}
, (3)

and f∗ is the convex conjugate of f .

K. Suzuki, M. Yukawa (Keio Univ.) ROBUST RECOVERY WITH MC LOSS May 9, 2022 10 / 24



Reformulation Based on Moreau’s Decomposition

(P1) min
X∈X

(
ΦL(B −XA) + λ1ΦM (X) +

λ2

2
∥X∥2F

)
Reformulation

(P1) ⇔ (P′
1) min

X∈X
[F (X) +G(X) +H(L1X)] (4)

▶ F (X) := λ2

2 ∥X∥2F − 1
2∥L1X∥2L − λ1

2 ∥X∥2M + ⟨L1X,B⟩L

+1(ıC ◦ L1/2)(L1/2(B − L1X)) + λ1
1(ıC ◦M1/2)(M1/2X)

(a certain condition → convexity)

▶ G(X) := λ1∥X∥2,1 (automatically convex)

▶ H(Y ) := ∥B − Y ∥2,1 (automatically convex)

▶ L1X := XA

K. Suzuki, M. Yukawa (Keio Univ.) ROBUST RECOVERY WITH MC LOSS May 9, 2022 11 / 24



Convexity Results

(P′
1) min

X∈X
[F (X) +G(X) +H(L1X)] (5)

F (X) :=
λ2

2
∥X∥2F − 1

2
∥L1X∥2L − λ1

2
∥X∥2M + ⟨L1X,B⟩L

+ 1(ıC ◦ L1/2)(L1/2(B − L1X)) + λ1
1(ıC ◦M1/2)(M1/2X) (6)

Proposition 1

1. The function F is convex (→ Global optimality) if

λ2 ≥ λmax{Adiag(l1, . . . , lm)AT + λ1diag(µ1, . . . , µn)}. (7)

2. The condition (7) is also necessary when
K := {X ∈ X | ∥L(B −XA)∥2,∞ ≤ 1, ∥MX∥2,∞ ≤ 1}

has a nonempty interior. (∥X∥2,∞: maximal column norm)

Note: K := {X ∈ X |
(
ıC ◦ L1/2 ⊡ q

)
(L1/2(B −XA)) = 0} ∩ {X ∈ X |(

ıC ◦M1/2⊡ q
)
(M1/2X) = 0} in the original paper.
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Scalability of Proposed Method

Table: Computational complexity (q: the number of iterations)

Algorithm Computational complexity

Proposed O(max{qnmd,min{d2,m2}max{d,m, pβ, pσ}})
RFS O(qm(m+ d)max{m+ d, n})

1000 2000 3000 4000
m
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ti
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ec
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18 min.

1 sec.

Scalability

Proposed

RFS
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Difficulties in Applying PDS or ADMM

(P1) min
X∈X

(
ΦL(B −XA) + λ1ΦM (X) +

λ2

2
∥X∥2F

)
▶ Applying the primal-dual splitting method directly:

▶ Each term should be convex
▶ Proximity operator of the conjugate function of the first term is the

zero operator
▶ Applying ADMM directly:

▶ A certain proximity operator needs to be firmly nonexpansive, but...
it is not even nonexpansive in the present case

Please refer to Section III-B of the following paper for detailed discussions:
K. Suzuki, and M. Yukawa, “Robust recovery of jointly-sparse signals using minimax

concave loss function.” IEEE Transactions on Signal Processing, pp. 669–681, 2021.
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Experiment A: Robustness in Overdetermined Case

▶ Signal model: B = X∗A+E +O
▶ X∗ ∈ Rn×d, A ∈ Rd×m: i.i.d. N (0, 1)

(X∗ is dense so that the pure effects of robustification can be seen.)
▶ E: SNR 10, 30 dB
▶ O: column sparse, i.i.d. N (0, 100)

▶ Approaches to be tested:

1. (P1): min
X∈Rn×d

ΦL(B −XA) +
λ2

2
∥X∥2F by the proposed approach

(λ1 = 0)

2. (P2): min
X∈Rn×d

∥B −XA∥2,1 +
λ2

2
∥X∥2F by the proposed approach

(λ1 = 0, L = O)

3. (P2): min
X∈Rn×d

∥B −XA∥2,1 +
λ

2
∥X∥2F by RFS (Nie et al., ’10)

4. (P0): min
X∈Rn×d

∥B −XA∥2,1 + λ∥X∥2,1 by RFS
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Experiment A: Results

▶ Evaluation metric: normalized mean squared errors (NMSE)

NMSE :=
∥X∗ − X̂∥2F

∥X∗∥2F
(8)
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(a) SNR 10 dB
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Figure: NMSE for different column-sparsity of outlier matrix under d = 128,
m = 256, and n = 128.

K. Suzuki, M. Yukawa (Keio Univ.) ROBUST RECOVERY WITH MC LOSS May 9, 2022 17 / 24



Experiment A: Results

▶ Evaluation metric: normalized mean squared errors (NMSE)

NMSE :=
∥X∗ − X̂∥2F

∥X∗∥2F
(8)

10 15 20 25 30 35 40
Outlier [%]

−8

−7

−6

−5

−4

−3

N
M
S
E
[d
B
]

Proposed (P1)

Proposed (P2)

RFS (P2)

RFS (P0)

(a) SNR 10 dB (b) SNR 30 dB

Figure: NMSE for different column-sparsity of outlier matrix under d = 128,
m = 256, and n = 128.
K. Suzuki, M. Yukawa (Keio Univ.) ROBUST RECOVERY WITH MC LOSS May 9, 2022 17 / 24



Experiment B: Support Recovery in Underdetermined Case

▶ Signal model: B = X∗A+E +O
▶ X∗ ∈ Rn×d: column sparse (k non-zero vectors), i.i.d. N (0, 1)
▶ A ∈ Rd×m: i.i.d. N (0, 1)
▶ E: SNR 30 dB
▶ O: column sparse (k′ non-zero vectors) with SNRO :=

∥X∗A∥2
F/m

∥O∥2
F/k

′

▶ Algorithms to be tested:
▶ Proposed approach
▶ Subspace augmented MUSIC (SAMUSIC) (Tropp et al., ’06)
▶ RFS (Nie et al., ’10)
▶ Simultaneous OMP (SOMP) (Kim et al., ’12)
▶ Rank aware order recursive matching pursuit (RAORMP) (Davies and

Eldar, ’12)
▶ Simultaneous normalized IHT (SNIHT) (Blanchard et al., ’14)
▶ Simultaneous COSAMP (SCOSAMP) (Blanchard et al., ’14)

▶ Evaluation metric: success probability of support recovery

K. Suzuki, M. Yukawa (Keio Univ.) ROBUST RECOVERY WITH MC LOSS May 9, 2022 18 / 24



Experiment B: Results (1/2)
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Figure: Recovery probability for different column sparsity of outlier matrix under
d = 256, m = 128, n = 32, and k = 16.
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Experiment B: Results (2/2)
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(b) d = 192, m = 128, k = 0.4d.

Figure: Recovery probability as a function of k/d and n under outlier 30%, and
SNRO −30 dB.
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Experiment B: Results (2/2)
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Experiment C: MECG Signal Recovery

Signal model:

B = X∗A+E +O = WΨA+E +O

= WΘ+E +O (9)

▶ B ∈ Rn×m: publicly available
database PTB [6]

wavelet coefficients
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Figure: Amplitudes of ECG wavelet

coefficients (jointly sparse)

▶ A ∈ Rd×m: random sparse binary
matrix

▶ Ψ ∈ Rd×d: orthonormal wavelet basis

▶ Θ := ΨA

▶ W ∈ Rn×d: wavelet coefficient
vectors

▶ SNR 30 dB

▶ O: column sparse, SNRO : −40 dB

[6] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for
complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215—e220, 2000.
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Experiment C: Results
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Figure: NMSE as a function of m under outlier rate 30%, NMSE as a function of
outlier rate under m = 30.
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Conclusion

▶ We proposed a robust algorithm to recover jointly-sparse signals in
the presence of outliers.

▶ We showed the convexity condition for the proposed formulation →
this led to the global optimality.
▶ The problem was reformulated via Moreau’s decomposition for splitting

the cost function into convex terms.

▶ The proposed approach is scalable to high dimensional settings by
the use of the efficient primal-dual splitting method.

▶ Extensive simulation studies showed the remarkable robustness of
the proposed method to outliers.

To the best of our knowledge, this is the first work leveraging the MC
function in a robust framework while maintaining the overall convexity of
the whole cost function.

Thank you very much for your kind listening
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