Digraph Signal Processing with Generalized Boundary Conditions

Bastian Seifert, Markus Püschel
Department of Computer Science, ETH Zurich

Goal

Concept

Undirected Graphs \quad Directed Graphs
Shift/Variation operator \checkmark Symmetric $\quad \checkmark$ Not symmetric

Convolution
Fourier Basis/Transform $\checkmark \quad X$ May not exist
Orthogonality \quad X (In general no)
Digraph Example:

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad L=D-A=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

No eigendecomposition/Fourier basis Only one eigenvalue (Jordan Block)

Key Idea: Boundary Conditions

Classical Signal Processing Finite, discrete time

This is done even when the signal is not periodic! Can we do this for other digraphs?

Edges to Destroy Jordan Blocks

Tool: Perturbation Theory

$\qquad n_{A+B}(\lambda)=n_{A}(\lambda)-n_{1}-\cdots$
Then $n+1, n_{n}$ are the sizes of Jordan blocks of the ematrix $A+B$ assoiate
LOW RANK PERTURATION OF JORDAN STRUCTURE

Our work: Specialize to Adjacency/Laplacian matrices
Corollay: Adding an edge is enough to destroy the largest Jordan block to a choosen eigenvalue.

Theorem: Let $u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{r}$ be left/right eigenvectors of Jordan blocks to the eigenvalue λ and B the matrix containig only the new edge, then if

$$
\sum_{k=1}^{r} u_{k}^{T} B v_{k} \neq 0
$$

the largest Jordan block of λ gets destroyed in $A+B$.

Algorithm

$-b_{6,1}-b_{6,2}+b_{6,5}-b_{7,2}+b_{7,4} \neq 0$

$-b_{7,2}+b_{7,4} \neq 0$

If eigenvectors V do not form a basis

By finding index which fullfills

the condition best
$(i, j) \leftarrow \operatorname{argmax}_{i, j}\left(\left|U_{i, k}\right| \cdot\left|V_{j, k}\right|\right)$
s.t. $A_{i, j}=0$

Spectrum
Finite, discrete time Adding the periodic boundary condition splits the eigenvalue 0 into simple eigenvalues lying

General digraphs
By adding an edge a Jordan block gets split into simple eigenvalues, but also the other eigenvalues are perturbed slightly.

$$
\begin{aligned}
& \text { By finding eigenvectors } \\
& \text { in the same subspace }
\end{aligned}
$$

in the same subspace
$D \leftarrow \operatorname{acos}\left(\left|V^{T} \cdot V\right|\right)$

Results

Generally applicable \& fast

Random digraphs with different properties, 500 nodes $\& \sim 5000$ edges

Scalable

Manhattan Taxi Graph Li \& Moura, ECAI, 2020 5464 nodes \& 11568 edges

Runtime: 19 hours, 243 edges added Runtime (inexact algo): $5 \mathbf{m i n}, 772$ edges added

Citation Graph

4989 nodes \& 17840 edges

Runtime (inexact algo): 31.5 min, 1911 edges added
Fourier bases found almost orthogonal
Histograms of pairwise angles between basis vectors

Total variation almost preserved
Eigenvectors of $\mathrm{A}+\mathrm{B}$ are approximate eigenvectors
of A, the total variation
$\mathrm{TV}_{A}(v)=\left\|v-\frac{1}{\mid \lambda_{\text {max }}} A v\right\|$
barely changes.

