Digraph Signal Processing with Generalized Boundary Conditions Bastian Seifert, Markus Püschel Department of Computer Science, ETH Zurich

Goal

Concept	Undirected Graphs	Directed Graphs
Shift/Variation operator	√ Symmetric	√ Not symmetric
Convolution	\checkmark	\checkmark
Fourier Basis/Transform	\checkmark	X May not exist
Orthogonality	\checkmark	X (In general no)

Digraph Example:

No eigendecomposition/Fourier basis Only one eigenvalue (Jordan Block)

Key Idea: Boundary Conditions

Classical Signal Processing

Finite, discrete time

This is done even when **the signal is not periodic**!

Can we do this for other digraphs?

Goal: Add small number of edges to obtain Fourier basis of eigenvectors

Edges to Destroy Jordan Blocks

Tool: Perturbation Theory	The
On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank	B the
S. V. Savchenko Theorem 1. Let A be an arbitrary square matrix, and let $B = \sum_{i=1}^{r} (\cdot, \xi_i) \eta_i$ be rank r. Consider any eigenvalue λ of A. We arrange the sizes $n_1 \ge \cdots \ge n_k$ of the Jordan blocks in nonascending order. Suppose that $k \ge r$ and	an operator of corresponding
$n_{A+B}(\lambda) = n_A(\lambda) - n_1 - \dots - n_r.$	(4)
Then n_{r+1}, \ldots, n_k are the sizes of Jordan blocks of the matrix $A + B$ associated with LOW RANK PERTURBATION OF JORDAN STRUCTURE [*]	th λ .
JULIO MORO [†] AND FROILÁN M. DOPICO [†] CONCLUDING THEOREM. Let A be a complex $n \times n$ matrix and λ_0 are of A with geometric multiplicity g. Let B be a complex $n \times n$ matrix with re- and C_0 be as in the statement of Theorem 2.1. Then the Jordan blocks of eigenvalue λ_0 are just the $g - \operatorname{rank}(B)$ smallest Jordan blocks of A with λ_0 if and only if $C_0 \neq 0$.	the latent end of the

Our work: Specialize to Adjacency/Laplacian matrices

Corollay: Adding an edge is enough to **destroy** the largest Jordan block to a choosen eigenvalue.

Algorithm

orem: Let $u_1, \ldots, u_r, v_1, \ldots, v_r$ be left/right vectors of Jordan blocks to the eigenvalue λ and e matrix containing only the new edge, then if

$$\sum_{k=1}^{r} u_k^T B v_k \neq 0$$

argest Jordan block of λ gets destroyed in A+B.

Jordan-Normal-Form

Spectrum

Finite, discrete time

Adding the periodic boundary condition splits the eigenvalue 0 into simple eigenvalues lying on the circle.

General digraphs

By adding an edge a Jordan block gets split into simple eigenvalues, but also the other eigenvalues are perturbed slightly.

-0.5 0 0.5 I

Real part

1.5

Results

Generally applicable & fast

Random digraphs with different properties, **500 nodes & ~5000 edges**

Watts Baraba

Scalable

Manhattan Taxi Graph Li & Moura, ECAI, 2020 5464 nodes & 11568 edges

Runtime:

Citation Graph https://snap.stanford.edu/data/cit-HepPh.html 4989 nodes & 17840 edges

Fourier bases found almost orthogonal

Histograms of pairwise angles between basis vectors

Total variation almost preserved

barely changes.

	min			median		max		
	edges	time	_	edges	time		edges	time
Strogatz	0	0.2s		1	0.5s		3	1.3s
ási-Albert	36	4.4s		44	10s		55	31s
n-Eguílez	10	2.2s		27	6s		47	9s

Medium number of edges added: 27 Median runtime: 6 seconds

19 hours, 243 edges added Runtime (inexact algo): **5 min**, 772 edges added

Runtime (inexact algo): 31.5 min, 1911 edges added

