

Introduction

Amyotrophic Lateral Sclerosis (ALS) -

- One of the most common neuromuscular diseases
- Affects both lower and upper motor neurons
- Development of symptoms over a long period of time
- Early diagnosis needed for prevention of the disease and improvement of quality of life for ALS patients

Electromyography (EMG) -

- Bio-signals consisting of several motor unit action Ο potentials (MUAPs)
- Various time and frequency domain features Ο explored to identify ALS from EMG signals

Existing Research

□ Traditional approaches involving manual feature extraction

Featu	Classifier	
Hand-crafted feature extraction	Mel-frequency cepstral coefficient (MFCC)	K-nearest neighbors (KNN)
	Discrete cosine transform (DCT)	KNN
	Spectral feature extraction from dominant MUAP of EMG	KNN
	Intrinsic mode functions (IMFs) using empirical mode decomposition (EMD)	Least square supp ctor machine (LS-S
Time-frequency (T-F) representation of EMG signal	Short time Fourier transform (STFT)	Convolutional neur network (CNN)
	Spectrogram	CNN
	Continuous wavelet transform (CWT)	CNN
	Smoothed pseudo Wigner-Ville distribution (SPWVD)	CNN

 A classifier taking raw EMG signal as injust considered in previous research works

Motivation behind proposed method -

- Reduction in computational cost by elin manual feature extraction step
- Faster and more suitable practical impl

ALSNET: A DILATED 1-D CNN FOR IDENTIFYING ALS FROM RAW EMG SIGNAL

K. M. Naimul Hassan, Md. Shamiul Alam Hridoy, Naima Tasnim, Atia Faria Chowdhury, Tanvir Alam Roni, Sheikh Tabrez, Arik Subhana, Celia Shahnaz Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology

Proposed System

Network Architecture of ALSNet

- Increase in dilation rate of each of the three convolution layers widens the gap between two kernels and helps to integrate more information from a wider context –
 - Previously applied successfully in biomedical image segmentation, speech synthesis and sound source localization frow raw audio data
- **Binary classification** performed by final dense layer with Sigmoid activation – 1 for ALS EMG and 0 for normal EMG

Dataset

st square support ve machine (LS-SVM)	Da		
volutional neural vork (CNN) N	 N2001 EMGLAB open access dataset consisting of three groups – Normal, Myopathy and ALS Normal and ALS groups used in the experiment 		
put not	 302 EMG signals (sampled at 24kHz frequency with duration of about 11s each 		
minating	 Each EMG signal segmented duration of 1s 		
lementation	 Total 3322 data samples sp sets by a ratio of 80:20:25 		

Experimental Results

- class

methods

Method	Overall Accuracy (%)	Sensitivity (%)	Specificity (%)	Balanced Accuracy (%)
MFCC + KNN	92.50	76.00	98.00	87.00
DCT + KNN	95.00	86.00	98.00	92.00
IMF + LS-SVM	95.00	93.00	92.54	92.75
MUAP + KNN	96.5	88.00	99.33	93.67
Deepemgnet	96.69	94.24	97.59	95.92
T-F + CNN	96.80	94.80	98.80	96.80
ALSNet	97.74	96.77	98.59	97.68

- A 1D dilated CNN based approach proposed in this research work
- No hand-crafted feature extraction needed to identify ALS from raw EMG signal Better performance than existing approach and
- reduced computational complexity

Output of ALSNet - probability value indicating the probability of a segment belonging to the ALS EMG

• Threshold for binary classification set to 0.5

Predicted Probability Values from ALSNet TP 🗆 🔷 FP 🗙 FN ΤN 600 **Test Samples**

Performance comparison of ALSNet with existing

Conclusion