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ABSTRACT
Recently almost all the mainstream deepfake de-
tection methods use Convolutional Neural Net-
works (CNN) as their backbone. However, due
to the overreliance on local texture information
which is usually determined by forgery methods
of training data, these CNN-based methods can-
not generalize well to unseen data. In this pa-
per, we propose a novel transformer-based frame-
work to model both global and local information
and analyze anomalies of face images. In partic-
ular, we design attention leading module, multi-
forensics module and variant residual connections
for deepfake detection, and leverage token-level
contrast loss for more detailed supervision.
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INTRODUCTION
Our key contributions are threefold as below:

1. We propose a novel deepfake detection
framework, Anti-Deepfake Transformer
(ADT), which pays attention to both global
and local information and makes up for the
shortcomings of CNN-based methods.

2. We design Attention Leading Module
(ALM), Variant Residual Connection (VRC)
and Multi-Forensics Module (MFM) to
take full advantage of Transformer and
introduce contrast loss.

3. Extensive experiments demonstrate that
ADT could maintain considerable perfor-
mance in the intra-dataset evaluation and
achieve state-of-the-art in the cross-dataset
evaluation in deepfake detection.

OVERVIEW
We show our framework as below. First we split images into small patches and project them into the em-
bedding space. Then we add learnable position embeddings and input them into trans-blocks connected
by variant residuals. And then, we apply ALM to select the most valuable tokens from all the tokens
output by the final trans-blocks. After that these selected tokens are input into a single transformer layer
to get sub-classification. Finally, we merge the four sub-results as the final prediction.

METHODS

Trans-blocks. Suppose that all the layers have C
self-attention heads then the hidden layer features
and attention weights can be expressed as follows:
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Attention Leading Module. To ensure the corre-
spondence between the input token and the atten-
tion weight as much as possible, we merge the at-
tention weights of all the previous layers.
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Then we find the index of the largest attention
weight from Afinal.
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Variant Residual Connection. Texture informa-
tion is an important clue for deepfake detec-
tion.we adopt variant residual connections among
adjacent trans-blocks.

XTi+1 = F(XTi)−XTi (4)

Multi-Forensics Module. We argue that the detec-
tion model should not only focus on those high-
layer features but also low-layer features, and al-
low all the features from different levels partici-
pate in the final decision.

Pred = Mean(S1,S2,S3,S4). (5)

Training Losses. Training such a deep trans-
former network requires strong and detail super-
vision. We leverage the combination of classifica-
tion loss(cross-entropy loss) Lcls and token-level
contrast loss Lcon as training losses. The latter can
be described as follows:
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RESULTS
We compare our framework with state-of-the-art methods in deepfake detection. We train and test the
performance of our model on FF++, and further we test the cross-dataset performance on Celeb-DF and
other popular datasets to evaluate its transferability.

Methods HQ LQ
ACC AUC ACC AUC

MesoNet 83.10 - 70.47 -
Face X-Ray - 87.35 - 61.60

Xception 92.39 94.86 80.32 81.76
Two-Branch - 98.70 - 86.59

SPSL 91.50 95.30 81.57 82.82
F3-Net 97.52 98.10 90.43 93.30

Multi-attentional 97.60 99.29 88.69 90.40
M2TR 98.23 99.84 92.35 94.22

Long-distance 99.51 99.88 95.81 98.49

Ours 92.05 96.30 81.48 82.52

Method FF++ (DF) Celeb-DF

MesoNet 84.70 54.80
Xception-c23 99.7 65.3
Two-Branch 93.20 73.40

SPSL 96.94 76.88
F3-Net 97.97 65.17

Multi-Attention 99.80 67.44
M2TR 99.50 65.70

Long-distance 99.97 70.33
BOLF - 78.26

Ours 98.71 84.97

CONCLUSION
In this paper, we propose a pure transformer-
based framework(ADT) for deepfake detection,
which aims to expose inconsistency between lo-
cal and global information. Extensive experi-
ments demonstrate that we achieves the state-of-
the-art transferability among almost all the public
datasets. And we hope to bring some inspiration.
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