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1 Minute Summary

• The log-amplitude mel spectrogram has widely been used in many tasks.

• The effectiveness of phase information was shown recently in tasks
such as speech enhancement and source separation.
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1 Minute Summary

• The log-amplitude mel spectrogram has widely been used in many tasks.

• The effectiveness of phase information was shown recently in tasks
such as speech enhancement and source separation.

• We propose a learnable audio frontend that can calculate
the phase and its derivatives on a mel-like frequency axis.

• This study investigated the effectiveness of the phase features in eight audio classification tasks.
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1 Minute Summary

• The log-amplitude mel spectrogram has widely been used in many tasks.

• The effectiveness of phase information was shown recently in tasks
such as speech enhancement and source separation.

• We propose a learnable audio frontend that can calculate
the phase and its derivatives on a mel-like frequency axis.

• This study investigated the effectiveness of the phase features in eight audio classification tasks.

• The experimental results showed that
the phase features significantly improved performance in five tasks.

• In contrast, overfitting to the recording environments was observed in two tasks.

• The results implied that the relationship between the phase values of adjacent elements 
is more important than the phase itself in audio classification.



Introduction: Mel-Frequency Feature Representation

• Log-amplitude mel spectrogram
• is used for audio classification, speech recognition, etc. [Zhang+2020, Heittola+2020]

• Features including phase information
• are such as complex spectrograms and  raw waveforms.
• are used for speech enhancement, source separation, etc. [Luo+2019, Hu+2020]
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Introduction: Mel-Frequency Feature Representation
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Introduction: Mel-Frequency Feature Representation

Phase phasor Instantaneous frequency
(time derivative of the phase)

Group delay
(frequency derivative of the phase)

The purpose of this study is to investigate the effectiveness of the phase features for audio classification.
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Theory: How Could Be the Phase of Mel Spectrogram?

• The phase of the mel spectrogram is NOT trivial.
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Theory: How Could Be the Phase of Mel Spectrogram?

• The problem is the separation of the following processes:
• Calculation of the complex time-frequency representation
• Nonlinearization of the frequency axis

STFT

Hz-mel
compression

Hz-mel
compression

• Complex time-frequency
representation (TFR) • Nonlinear frequency axisCombine



Theory: How Could Be the Phase of Mel Spectrogram?
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• Complex time-frequency
representation (TFR)

• Nonlinear frequency axis
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Methods: LEAF-extended
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LEAF-extended (LEarnable Audio Frontend - extended)

LEAF-extended
• can calculate power and phase features

on a mel-like nonlinear frequency axis.
• Compressed power
• Phase phasor
• Instantaneous frequency (time derivative of the phase)

• Group delay (frequency derivative of the phase)

• is based on LEarnable Audio Frontend (LEAF) [Zeghidour+2021].
• LEAF only outputs a power feature.
• LEAF performs comparable with or better than

the log-amplitude mel spectrogram [Zeghidour+2021].
• has learnable parameters.



Methods: LEAF-extended
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Methods: Gabor Time-Frequency Representation Calculator

Gabor TFR 
calculator

Waveform

∗
1-D conv

Gabor filterbank

=

Mel-like frequency complex TFR𝜑! 𝑛 = exp −
𝑛"

2𝜎!"
+ 2𝜋𝑖𝜂!𝑛

𝑚: filter ID, 𝑛: time index,
𝜎!: window width (learnable),
𝜂!: center frequency (learnable)

The learnable parameters are initialized
so that the frequency response has
a similar shape as the mel filterbank.

Waveform



Experiments: Neural Network for Audio Classification

1. LEAF-extended outputs the power and phase 
features from an input signal.
• Either one of the phase features is calculated.

2. The features are stacked as a 2-D image.

3. The features are input to a 2-D CNN,
and the CNN predicts a classification label.
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Experiments: Classification Tasks

• Eight audio classification tasks were performed
to investigate the effectiveness of the phase features.

Task Dataset Classes
Training 
samples

Evaluation 
samples

Musical pitch detection NSynth [Engel+2017] 112 289,205 16,774
Musical instrument detection NSynth [Engel+2017] 11 289,205 16,774
Language identification VoxForge [Revay+2019] 6 148,654 27,764
Birdsong detection DCASE2018 [Stowell+2018] 2 35,690 12,620
Speaker identification VoxCeleb [Nagrani+2017] 1,251 128,086 25,430
Acoustic scene classification TUT [Heittola+2018] 10 6,122 2,518
Keyword spotting SpeechCommands [Warden2018] 35 84,843 20,986
Emotion recognition CREMA-D [Cao+2014] 6 5,146 2,296



Results and Discussion: Group Delay (GD)
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• Compared to using the power alone,
the performance significantly improved by adding GD
in musical instrument detection, language identification, and birdsong detection.
• GD has already been applied to

formant estimation and segmentation of speech [Murthy+2011].
• GD might include information about timbre and segmentation.



Results and Discussion: Instantaneous Frequency (IF)
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• Compared to using the power alone,
the performance significantly improved by adding IF
in musical pitch detection and speaker identification.
• IF has already been applied to F0 estimation successfully [Kawahara+2011].



Results and Discussion: Instantaneous Frequency (IF)
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• Compared to using the power alone,
the performance significantly improved by adding IF
in musical pitch detection and speaker identification.
• IF has already been applied to F0 estimation successfully [Kawahara+2011].
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Results and Discussion: Instantaneous Frequency (IF)
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• Compared to using the power alone,
the performance significantly improved by adding IF
in musical pitch detection and speaker identification.
• IF has already been applied to F0 estimation successfully [Kawahara+2011].

• The performance significantly degraded by adding IF 
in language identification and birdsong detection.
• The datasets for language identification and birdsong detection

contained data from various recording environments (e.g., power line hum).
• IF might have caused overfitting to the recording environments.



Results and Discussion: Phase Phasor
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• Compared to using the power alone,
the performance significantly improved by adding the phase phasor
in musical pitch detection, musical instrument detection, and language identification.

• For a specific task, if the phase phasor significantly improved performance,
then the derivatives of the phase (GD or IF)
always significantly improved performance as well.
• This fact suggests that in audio classification,

the relationship between adjacent elements of the phase
is more important than the phase value itself.



Results and Discussion: Remaining Tasks
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The datasets for these tasks were relatively small.
If the datasets are larger, significant differences might appear.



Conclusion

• We investigated the effectiveness of the phase features of a time-frequency representation
for audio classification.

• We proposed a learnable audio frontend, LEAF-extended, 
which can calculate phase features on a learned nonlinear frequency axis.
• Phase phasor
• Instantaneous frequency (the time derivative of the phase)
• Group delay (the frequency derivative of the phase)

• The results suggested that the phase and its derivatives were valuable in some classification tasks:
• Musical pitch detection
• Musical instrument detection
• Language identification
• Speaker identification
• Birdsong detection

• On the other hand, the instantaneous frequency might have caused
overfitting to the recording environments (e.g., power line hum) in some tasks.
• Future work should address the impact of recording environments.
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