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1 Minute Summary

« The log-amplitude mel spectrogram has widely been used in many tasks.

» The effectiveness of phase information was shown recently in tasks
such as speech enhancement and source separation.
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1 Minute Summary

« The log-amplitude mel spectrogram has widely been used in many tasks.

» The effectiveness of phase information was shown recently in tasks
such as speech enhancement and source separation.

« We propose a learnable audio frontend that can calculate
the phase and its derivatives on a mel-like frequency axis.

« This study investigated the effectiveness of the phase features in eight audio classification tasks.
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1 Minute Summary

« The log-amplitude mel spectrogram has widely been used in many tasks.

» The effectiveness of phase information was shown recently in tasks
such as speech enhancement and source separation.

« We propose a learnable audio frontend that can calculate
the phase and its derivatives on a mel-like frequency axis.

« This study investigated the effectiveness of the phase features in eight audio classification tasks.

* The experimental results showed that
the phase features significantly improved performance in five tasks.

 In contrast, overfitting to the recording environments was observed in two tasks.

» The results implied that the relationship between the phase values of adjacent elements
is more important than the phase itself in audio classification.



Introduction: Mel-Frequency Feature Representation

 Log-amplitude mel spectrogram
* is used for audio classification, speech recognition, etc. [£hang+2020, Heittola+2020]

* Features including phase information
« are such as complex spectrograms and raw waveforms.
« are used for speech enhancement, source separation, etc. [Luo+2019, Hu+2020]
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Introduction: Mel-Frequency Feature Representation
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Introduction: Mel-Frequency Feature Representation
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The purpose of this study is to investigate the effectiveness of the phase features for audio classification.



Theory: How Could Be the Phase of Mel Spectrogram?

« The phase of the mel spectrogram is NOT trivial.
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Theory: How Could Be the Phase of Mel Spectrogram?

* The problem is the separation of the following processes:
 Calculation of the complex time-frequency representation
* Nonlinearization of the frequency axis
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Theory: How Could Be the Phase of Mel Spectrogram?
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Methods: LEAF-extended

Waveform

LEAF-extended (LEarnable Audio Frontend - extended

)

LEAF-extended

» can calculate power and phase features
on a mel-like nonlinear frequency axis.
» Compressed power
* Phase phasor
* Instantaneous frequency (time derivative of the phase)
» Group delay (frequency derivative of the phase)
* is based on LEarnable Audio Frontend (LEAF) [£eghidour+2021]
« LEAF only outputs a power feature.
» LEAF performs comparable with or better than
the log-amplitude mel spectrogram [£eghidour+2021]
* has learnable parameters.
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Methods: LEAF-extended
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Methods: Gabor Time-Frequency Representation Calculator

Waveform
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Gabor TFR
calculator
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m: filter ID, n: time index,

om: Window width (learnable), so that the frequency response has

The learnable parameters are initialized
} a similar shape as the mel filterbank.

nm. center frequency (learnable)



Experiments: Neural Network for Audio Classification
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Experiments: Classification Tasks

« Eight audio classification tasks were performed
to investigate the effectiveness of the phase features.

Training Evaluation

Task Dataset Classes samples samples
Musical pitch detection NSynth [Engel+2017] 289,205
Musical instrument detection NSynth [Engel+2017] 11 289,205 16,774
Language identification VoxForge [Revay+2019] 6 148,654 27,764
Birdsong detection DCASE2018 [Stowell+2018] 2 35,690 12,620
Speaker identification VoxCeleb [Nagrani+2017] 1,251 128,086 25,430
Acoustic scene classification TUT [Heittola+2018] 10 6,122 2,518
Keyword spotting SpeechCommands [Warden2018] 35 84,843 20,986
Emotion recognition CREMA-D [Cao+2014] 6 5,146 2,296




Results and Discussion: Group Delay (GD)

Musical instrument Language Birdsong
detection identification detection

mPower » +GD m Power . +GD m Power =+ +GD

\‘
N
—
(@)
o
oo
(@)]

\‘
N
(0]
o

()
(00)

Accuracy [%]
\l
o

\l

o

Accuracy [%]
Accuracy [%]
\l
(@)

N9
AN\,

65

« Compared to using the power alone,
the performance significantly improved by adding GD
in musical instrument detection, language identification, and birdsong detection.
» GD has already been applied to
formant estimation and segmentation of speech Murthy+2011],
« GD might include information about timbre and segmentation.



Results and Discussion: Instantaneous Frequency (IF)
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« Compared to using the power alone,
the performance significantly improved by adding IF
in musical pitch detection and speaker identification.

« |F has already been applied to FO estimation successfully Kawahara+2011]
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Results and Discussion: Instantaneous Frequency (IF)
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Results and Discussion: Instantaneous Frequency (IF)

Musical pitch Musical instrument Language Birdsong
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Compared to using the power alone,
the performance significantly improved by adding IF
in musical pitch detection and speaker identification.
« |F has already been applied to FO estimation successfully [Kawahara+2011]
« The performance significantly degraded by adding IF
in language identification and birdsong detection.
* The datasets for language identification and birdsong detection
contained data from various recording environments (e.g., power line hum).
* |IF might have caused overfitting to the recording environments.
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Results and Discussion: Phase Phasor
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» Compared to using the power alone,
the performance significantly improved by adding the phase phasor
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the relationship between adjacent elements of the phase
mPower #+GD o+ =+Phasor is more important than the phase value itself.



Results and Discussion: Remaining Tasks
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Conclusion

* We investigated the effectiveness of the phase features of a time-frequency representation
for audio classification.

« We proposed a learnable audio frontend, LEAF-extended,
which can calculate phase features on a learned nonlinear frequency axis.

« Phase phasor ) Instantaneous
Phase phasor | |- | frequency |l. | Group delay

 Instantaneous frequency (the time derivative of the phase)
« Group delay (the frequency derivative of the phase)
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* The results suggested that the phase and its derivatives were valuable in some classification tasks:
» Musical pitch detection
Musical instrument detection

Language identification
Speaker identification
Birdsong detection

« On the other hand, the instantaneous frequency might have caused
overfitting to the recording environments (e.g., power line hum) in some tasks.

» Future work should address the impact of recording environments.
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