Google

Turn-to-Diarize: Online Speaker Diarization Constrained by Transformer Transducer Speaker Turn Detection

Authors:Wei Xia, Han Lu, Quan Wang, Anshuman Tripathi,
Yiling Huang, Ignacio Lopez Moreno, Hasim SakPresented by:Quan Wang

Processing Society

Part 1:

Introduction

Follow our previous work: Watch these videos

- https://www.youtube.com/watch?v=pjxGPZQeeO4
- https://www.youtube.com/watch?v=pGkqwRPzx9U

Google [1]	
Speal	ker Diarization with LSTM
Authors:	Quan Wang, Carlton Downey, Li Wan, Philip A. Mansfield, Ignacio Lopez Moreno
Presented by:	Quan Wang
N - N 0:00 / 20:05	

[ICASSP 2018] Google's Diarization System: Speaker Diarization with LSTM

Google [TCASSP 2019
Fully Sup	ervised Speaker Diarization
	Say Goodbye to clustering
Authors:	Aonan Zhang, Quan Wang, Zhenyao Zhu, John Paisley, Chong Wang
Presented by:	Quan Wang
► ► ▲ 0:00 / 28:09 • 0	hapters > Signal Processing Sol CC UII 20 CE LE

[ICASSP 2019] Fully Supervised Speaker Diarization: Say Goodbye to clustering

Recap: What is speaker diarization?

- The process of partitioning an input audio stream into <u>homogeneous segments</u> according to the <u>speaker identity</u>
- "Who Spoke When?"

Recap: Speaker recognition with d-vector

Wan, Li, Quan Wang, Alan Papir, and Ignacio Lopez Moreno. "Generalized end-to-end loss for speaker verification." In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4879-4883. IEEE, 2018.

Recap: Baseline "dense d-vector" diarization system

Wang, Quan, Carlton Downey, Li Wan, Philip Andrew Mansfield, and Ignacio Lopz Moreno. "Speaker diarization with LSTM." In 2018 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 5239-5243. IEEE, 2018.

The rise of supervised diarization!

- Fully supervised approaches for diarization became popular!
- They replace the unsupervised clustering algorithms
- Representative works:
 - UIS-RNN, <u>ICASSP 2019</u> Google
 - Discriminative Neural Clustering, <u>SLT 2021</u> UNIVERSITY OF CAMBRIDGE
 - Permutation invariant training (E2E diarization)
 - Google Patent 2018
 - Interspeech 2019

Annotating the training data

- To train a supervised diarization model, what kind of data do we need?
 - Conversational audio
 - Time-annotated speaker labels, e.g.:

- This kind of annotation is extremely **expensive** and **error-prone**!
 - Annotator needs to frequently **go back** to compare with previous speakers
 - Single pass annotation of **10 min** of audio takes about **2 hours**!

Part 2:

Speaker turn detection

How to make annotations easier?

- From "who spoke when" to "who spoke what"
 - In most applications of diarization, we care about "what" more than "when"
 - \circ "what" means the text transcript from ASR

start:	0.0,	end:	1.2,	speaker:	A
start:	1.3,	end:	4.4,	speaker:	В
start:	6.7,	end:	9.4,	speaker:	A

spkA: good morning
spkB: morning how are you
spkA: good what about you

Who spoke what

How to make annotations easier?

- From "speaker labels" to "speaker turns"
 - Annotating speaker labels requires frequently checking previous speakers from long term history
 - Annotating speaker turns:
 - Only focuses on short term context
 - Minimal incremental efforts on top of regular ASR annotation

spkA: good morning
spkB: morning how are you
spkA: good what about you

Speaker labels

good morning <st> morning how are you <st> good what about you <st>

Speaker turns

Google

Motivation

- **Speaker turn annotations** are much easier to obtain at large scale, compared with time-annotated speaker labels
- How can we make use of them for speaker diarization?
 - Train an ASR-alike speaker turn detection model
 - Compute turn-wise speaker embeddings
 - Use speaker turns to constrain the unsupervised clustering algorithm

Speaker turn detection

- We treat speaker turn as a new special token <st>
- It is jointly trained with the ASR model

good morning morning how are you

good what about you

good morning <st> morning how are
you <st> good what about you <st>

Transcript to train ASR

Transcript to train ASR + speaker turn

Google

Transformer transducer model

- We use the transformer transducer architecture
 - Zhang, Qian, et al. "Transformer transducer: A streamable speech recognition model with transformer encoders and RNN-T loss." *ICASSP*. IEEE, 2020.
 - \circ 75 possible graphemes in the output

Table 1.	Hyper-parameters	of a	Transformer	block.
----------	------------------	------	-------------	--------

Input feature projection	256
Dense layer 1	1024
Dense layer 2	256
Number attention heads	8
Head dimension	64
Dropout ratio	0.1

Part 3:

Turn-to-Diarize

System architecture

Google

Core components

- Speaker turn detection
 - Use the transformer transducer jointly trained with ASR
 - If a turn is longer than 6 seconds, insert a "fake turn" (compensate for false rejects)
- Speaker encoder
 - The d-vector model
 - Reset states at speaker turn boundaries
 - One embedding for **each turn** (instead of fixed-length segment)
- Spectral clustering
 - Cluster the turn-wise d-vectors makes clustering drastically cheaper!
 - Constrained by speaker turns

Spectral clustering (unconstrained)

- Basic steps:
 - Construct an affinity matrix based on cosine similarities
 - Refine the affinity matrix:
 - No Gaussian blur (only useful for dense d-vectors)
 - Row-wise soft-thresholding with auto-tune
 - Symmetrization
 - Eigen-decomposition of Laplacian matrix
 - Estimate number of speakers via eigen-gap
 - K-means on re-normalized spectral embeddings

Speaker turn priors

- We want to integrate prior information from speaker turns into the clustering process
- For the transformer transducer model:
 - Some <st> tokens are fake tokens to avoid very long turns
 - Each true <st> token has a confidence: c(<st>)
- Neighboring segments:
 - "Cannot-link" (CL): If they are segmented by a true <st> token
 - "Must-link" (ML): If they are segmented by a fake <st> token

Constraint matrix

- The constraint matrix **Q** has the same shape as the affinity matrix **A**
- Heuristics:
 - Segments around highly confident <st> must be from different speakers
 - Segments around **fake** <st> must be from the **same** speaker

$$\mathbf{Q}_{ij} = \begin{cases} -1, & \text{If } (i,j) \in \text{CL and } c(<\texttt{st}>) > \sigma; \\ +1, & \text{If } (i,j) \in \text{ML}; \\ 0, & \text{Otherwise.} \end{cases}$$

Propagating the constraints

- We want to propagate constraints to non-neighboring segments
 - Example: $A = B, A \neq C \Rightarrow B \neq C$
- We use Exhaustive and Efficient Constraint Propagation (E2CP)

$$\mathbf{Q}^* = (1-\alpha)^2 (I-\alpha \bar{\mathbf{A}})^{-1} \mathbf{Z} (I-\alpha \bar{\mathbf{A}})^{-1}.$$

Constrained spectral clustering

• Once we have the propagated constraint matrix Q^* , we adjust the affinity matrix:

$$\hat{\mathbf{A}}_{ij} = \begin{cases} 1 - (1 - \mathbf{Q}_{ij}^{*}) (1 - \mathbf{A}_{ij}), & \text{If } \mathbf{Q}_{ij}^{*} \ge 0; \\ (1 + \mathbf{Q}_{ij}^{*}) \mathbf{A}_{ij}, & \text{If } \mathbf{Q}_{ij}^{*} < 0. \end{cases}$$

- This happens before the refinement operations
- Workflow: affinity \rightarrow constraint \rightarrow refinement \rightarrow Laplacian

Part 4:

Experiments

Datasets

- Speaker turn detection training sets:
 - Fisher, Callhome American English (training subset), ~7500 hours of YouTube videos (internal)
- Speaker encoder training sets:
 - Vendor collected speech queries (37 locales), LibriVox, CN-Celeb, TIMIT, VCTK
- Diarization eval sets:
 - "Outbound" telephone speech: 450 conversations, each with 2 speakers
 - "Inbound" telephone speech : 250 conversations, each with 2~10 speakers
 - Callhome American English (eval subset)

Experiment protocol

- We compare two systems:
 - "Dense d-vector": Cluster d-vectors from fixed-length segments (400ms)
 - "Turn-to-diarize": Cluster d-vectors from speaker turns (max 6s, average ~4s)
- We report:
 - Confusion and Diarization Error Rate (DER)
 - Floating point operations to process one second of audio (FLOP/s) after 10min and 1h
 - Assume clustering runs every 4s
 - Assume auto-tune searches 10 steps

Results: computational cost

System	Method	Inbound		Outbound		Callhome Eval		GFLOP/s	GFLOP/s
System	Method	Conf.	DER	Conf.	DER	Conf.	DER	at 10min	at 1h
Dansa d vactor	Dense	17.98	22.13	10.66	15.97	5.39	7.76	0.85	36.54
Dense a-vector	Dense + Auto-tune	14.09	18.24	9.56	14.88	5.42	7.79	4.76	361.37
Turn-to-diarize	Turn	17.87	19.43	8.41	10.34	8.23	10.08	1.00	1.18
	Turn + E2CP	17.21	18.77	7.94	9.86	3.56	5.41	1.00	1.18
	Turn + Auto-tune	13.83	15.39	7.01	8.93	5.11	6.95	1.02	2.81
	Turn + E2CP + Auto-tune	13.66	15.22	6.86	8.78	3.49	5.33	1.02	2.81

Table 2. Confusion (%), total DER (%) and GFLOP/s on three datasets for different embeddings and methods.

• Clustering a long sequence of dense d-vectors is **extremely expensive**

- Mostly due to **eigen-decomposition**
- Especially after running for a long time
- Even more expensive if we want to **auto-tune** the refinement threshold

Results: computational cost

System	Method	Inbound		Outbound		Callhome Eval		GFLOP/s	GFLOP/s
System	Method	Conf.	DER	Conf.	DER	Conf.	DER	at 10min	at 1h
Dansa d vactor	Dense	17.98	22.13	10.66	15.97	5.39	7.76	0.85	36.54
Dense a-vector	Dense + Auto-tune	14.09	18.24	9.56	14.88	5.42	7.79	4.76	361.37
Turn-to-diarize	Turn	17.87	19.43	8.41	10.34	8.23	10.08	1.00	1.18
	Turn + E2CP	17.21	18.77	7.94	9.86	3.56	5.41	1.00	1.18
	Turn + Auto-tune	13.83	15.39	7.01	8.93	5.11	6.95	1.02	2.81
	Turn + E2CP + Auto-tune	13.66	15.22	6.86	8.78	3.49	5.33	1.02	2.81

Table 2. Confusion (%), total DER (%) and GFLOP/s on three datasets for different embeddings and methods.

- Turn-to-diarize made the sequence much shorter!
 - Clustering becomes very cheap
 - Even with auto-tune
 - Even after processing 1h of audio

Results: quality

System	Method	Inbound		Outbound		Callhome Eval		GFLOP/s	GFLOP/s
	Method	Conf.	DER	Conf.	DER	Conf.	DER	at 10min	at 1h
Dense d-vector	Dense	17.98	22.13	10.66	15.97	5.39	7.76	0.85	36.54
	Dense + Auto-tune	14.09	18.24	9.56	14.88	5.42	7.79	4.76	361.37
Turn-to-diarize	Turn	17.87	19.43	8.41	10.34	8.23	10.08	1.00	1.18
	Turn + E2CP	17.21	18.77	7.94	9.86	3.56	5.41	1.00	1.18
	Turn + Auto-tune	13.83	15.39	7.01	8.93	5.11	6.95	1.02	2.81
	Turn + E2CP + Auto-tune	13.66	15.22	6.86	8.78	3.49	5.33	1.02	2.81

Table 2. Confusion (%), total DER (%) and GFLOP/s on three datasets for different embeddings and methods.

- For turn-to-diarize:
 - Auto-tune is critical for the performance (especially for >2 speakers)
 - Speaker turn constraints offer additional improvement

Results: quality

System	Method	Inbound		Outbound		Callhome Eval		GFLOP/s	GFLOP/s
	Method	Conf.	DER	Conf.	DER	Conf.	DER	at 10min	at 1h
Dense d vector	Dense	17.98	22.13	10.66	15.97	5.39	7.76	0.85	36.54
Dense d-vector	Dense + Auto-tune	14.09	18.24	9.56	14.88	5.42	7.79	4.76	361.37
Turn-to-diarize	Turn	17.87	19.43	8.41	10.34	8.23	10.08	1.00	1.18
	Turn + E2CP	17.21	18.77	7.94	9.86	3.56	5.41	1.00	1.18
	Turn + Auto-tune	13.83	15.39	7.01	8.93	5.11	6.95	1.02	2.81
	Turn + E2CP + Auto-tune	13.66	15.22	6.86	8.78	3.49	5.33	1.02	2.81

Table 2. Confusion (%), total DER (%) and GFLOP/s on three datasets for different embeddings and methods.

• Best turn-to-diarize significantly outperforms best "dense d-vector"

Other benefits

- One of the biggest challenges in diarization:
 - Knowing "when to diarize"
 - Does this utterance has at least two speakers?
 - Yes We need diarization
 - No No need of diarization
- Turn-to-Diarize allows a "smart mode":
 - Start with the transformer transducer only, disable anything else
 - Only enable speaker encoder and clustering after the first <st> has been detected

Part 5:

Python library

The spectralcluster package

- We offer a Python re-implementation
 - Only implements constrained spectral clustering, not the full diarization system
 - Available at: <u>https://github.com/wq2012/SpectralCluster</u>
 - Similar APIs with standard scikit-learn clustering algorithms
 - Unit tests with >90% coverage
 - Detailed documentation
 - PyPI packaging:

\$ pip3 install spectralcluster

Features

- Refinement operations on affinity matrix
- Different types of Laplacian matrix
- Customized distance for K-means
- Auto-tune of the threshold
- Constrained spectral clustering with E2CP
- Built-in configurations used by our paper:

from spectralcluster import configs

labels = configs.turntodiarize_clusterer.predict(embeddings, constraints)

Part 6:

Conclusions and future work

Conclusions

- We proposed Turn-to-Diarize:
 - Easier annotation: No need for time-annotated speaker labels, just need speaker turns in transcripts
 - Transformer transducer model for joint ASR and speaker turn detection
 - One speaker embedding for each turn
 - Constrained spectral clustering via E2CP
- Experimental results:
 - Drastically reduces computational cost of clustering
 - Significant improvement with auto-tune and E2CP
 - Outperforms the best dense d-vector system

Future work

- Multilinguality
 - Our current transformer transducer model is only trained with English
 - We want to train on massively multilingual datasets to generalize to more languages
- Multimodality
 - The constrained spectral clustering idea can generalize to other modalities
 - E.g. visual signals, which offer stronger confidence on user identities

Questions?

