2022 IEEE International Conference on Acoustics, Speech, and Signal Processing

Singapore, China, Virtual

human-centric signal processing

May 22 - 27, 2022 - In-Person @ Marina Bay Sands Expo and Convention Centre

May 22 - 27, 2022 - In-Person @ The Chinese University of HongKong, Shenzhen May 7 - 13, 2022 - Virtual for All Paper Presentations

Panchromatic Imagery Copy-paste Localization Through Data-driven Sensor Attribution

E.D. Cannas (†), J. Horvàth (*), S. Baireddy (*),

P. Bestagini (†), E.J. Delp (*), S. Tubaro (†)

(†) Image and Sound Processing Lab (ISPL) Politecnico di Milano, Milan, Italy

(*) Video and Image Processing Laboratory Purdue University, West Lafayette, IN SA

Motivation

Overhead images, i.e., images captured by a platform such as an aircraft or satellite, have a strategic role in numerous fields:

- 1. Land-cover mapping;
- 2. Earth monitoring;
- 3. Military and intelligence applications [*].

[*] https://www.space.com/russia-ukraine-invasion-satellite-photos

2

Motivation

Many online websites offer overhead images for free → easily accessible, but also **easy to forge [*]**

We need forensic instruments to determine the authenticity of overhead images

[*] https://www.bellingcat.com/news/2014/11/14/russian-state-television-shares-fake-images-of-mh17-being-attacked/

Goal

Given a panchromatic sample, we want to localize doctored pixel regions coming from a image generated by a different satellite \rightarrow copy-paste attacks

Methodology

We leverage **sensor attribution traces** extracted by an ensemble of **Convolutional Neural Networks (CNNs):**

- 1. We purposely **train** a CNN to predict the satellite that generated a panchromatic image;
- 2. At **test time**, we localize copy-paste attacks as inconsistencies in the attribution traces, i.e., pixel regions coming from a satellite different from the rest of the image, in a **patch-wise manner**.

Methodology

We leverage **sensor attribution traces** extracted by an ensemble of **Convolutional Neural Networks (CNNs):**

- 1. We purposely **train** a CNN to predict the satellite that generated a panchromatic image;
- 2. At **test time**, we localize copy-paste attacks as inconsistencies in the attribution traces, i.e., pixel regions coming from a satellite different from the rest of the image, in a **patch-wise manner**.

Methodology

Given an image under analysis:

- 1. Split it into patches (128x128 resolution, 32x32 stride);
- 2. Extract a feature vector y_i per patch with the CNN;
- 3. Compute the average feature vector $\hat{y} = \sum_{i=1}^{N} y_i / N$;
- 4. Compute **distance** $d_i = |y_i \hat{y}|$ between each feature vector and the average one;
- 5. Attribute the distance value to each patch as copy-paste heatmap.

Experimental setup

Dataset:

- 1. 8-bit panchromatic images from Maxar technologies;
- 2. 5 satellites (GE01, QB02, WV01-2-3), 5 geographical regions (barren, field, forest, snow, urban);
- **3.** 1024x1024 patches extracted from the images, for a total of 100'000 samples divided into:
 - **1. Training set:** 50'000 images for training the satellite attribution CNN;
 - 2. Test set: 50'000 images further elaborated to create copy-paste attacks.

Experimental setup

Test set → 50'000 images further elaborated to create copy-paste attacks

Semantically coherent copypaste attacks (i.e., same geographical regions) with source and target sample coming from different satellites

Different editing operations applied to make the attack more plausible (e.g., blurring, resizing, affine transforms, etc.)

Tampering mask highlights the region under attack

Copy-paste image

Copy-paste image

Tampering mask

Tampering mask

Experimental setup

Satellite attribution CNN:

- 1. EfficientNetBO trained as a M-class satellite classifier;
- 2. Model ensembling:
 - 1. Trained 5 different networks on subset of the available satellites;
 - 2. Combine the responses from each element of the ensemble using the Variance to Entropy Ratio (VER).

Results (1)

Comparison with State-Of-The-Art (SOTA):

1. Noiseprint [*] and Splicebuster [**] as baselines;

2. Test set comprehending:

- 1. 50 copy-paste per source satellite and geographical region;
- 2. 3 types of editing (i.e., Gaussian blurring, resizing, affine transform);
- 3. 3750 total test samples, with fixed tampered area of 256x256 pixels.
- Localization results computed as Receiving Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values from the generated copy-paste heatmaps against the binary tampering masks.
 [*] D. Cozzolino and L. Verdoliva, "Noiseprint: A CNN-based camera model fingerprint", IEEE TIFS 2020

[*] D. Cozzolino and L. Verdoliva, "Noiseprint: A CNN-based camera model fingerprint", IEEE TIFS 2020
[**] D. Cozzolino, G. Poggi, and L. Verdoliva, "Splicebuster: A new blind image splicing detector", IEEE WIFS 2015

Results (1)

Comparison with State-Of-The-Art (SOTA)

Region	Method	AUC
	Noiseprint	0.949
Barren	Splicebuster	0.976
	VER mask (ours)	0.977
	Noiseprint	0.961
Field	Splicebuster	0.976
	VER mask (ours)	0.977
	Noiseprint	0.960
Forest	Splicebuster	0.974
	VER mask (ours)	0.978
	Noiseprint	0.930
Snow	Splicebuster	0.950
	VER mask (ours)	0.952
	Noiseprint	0.928
Urban	Splicebuster	0.970
	VER mask (ours)	0.963

Satellite	Method	AUC
	Noiseprint	0.939
GE01	Splicebuster	0.969
	VER mask (ours)	0.991
	Noiseprint	0.952
QB02	Splicebuster	0.970
	VER mask (ours)	0.978
	Noiseprint	0.948
WV01	Splicebuster	0.965
	VER mask (ours)	0.981
	Noiseprint	0.944
WV02	Splicebuster	0.964
	VER mask (ours)	0.927
	Noiseprint	0.946
WV03	Splicebuster	0.978
	VER mask (ours)	0.974

Panchromatic Imagery Copy-paste Localization Through Data-driven Sensor Attribution

Results (1)

Comparison with State-Of-The-Art (SOTA)

Panchromatic Imagery Copy-paste Localization Through Data-driven Sensor Attribution

Results (2)

"In the wild" dataset

- 1. More post-processing operations:
 - 1. 4 different types of blurring (i.e., Gaussian blur, motion blur, median blur, and average blur);
 - 2. 3 types of affine transforms (i.e., random rotation and resize, piece-wise affine transform and a prospective transform);
 - 3. 2 types of contrast enhancement (i.e, logarithmic and sigmoid contrast).
- 2. Different resolutions of the tampered area (from 128x128 to 256x256);
- **3. 22'500 samples in total** equally distributed across source satellite and geographical region.

Results (2)

"In the wild" dataset

Panchromatic Imagery Copy-paste Localization Through Data-driven Sensor Attribution

Conclusions

We investigated the problem of copy-paste localization in the context of panchromatic imagery

Our solution does not require training on copy-paste samples and is considerably faster than SOTA techniques for natural imagery

Future works will be devoted to the integration of open-set recognition and uncertainty estimation techniques for handling the case where both the source and target satellites are unknown by the networks ensemble

2022 IEEE International Conference on Acoustics, Speech, and Signal Processing

Singapore, China, Virtual

human-centric signal processing

May 22 - 27, 2022 - In-Person @ Marina Bay Sands Expo and Convention Centre

May 22 - 27, 2022 - In-Person @ The Chinese University of HongKong, Shenzhen May 7 - 13, 2022 - Virtual for All Paper Presentations

Panchromatic Imagery Copy-paste Localization Through Data-driven Sensor Attribution

E.D. Cannas (†), J. Horvàth (*), S. Baireddy (*), Paolo Bestagini (†), E.J. Delp (*), Stefano Tubaro (†)

(†) Image and Sound Processing Lab (ISPL) Politecnico di Milano, Milan, Italy

(*) Video and Image Processing Laboratory Purdue University, West Lafayette, IN SA