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NON CONVEX QUADRATIC PROBLEMS

• We analyze the fundamental theory of Quadratic Problems (QP) with single constraints.

• These problems possess strong duality under Slater’s condition.

• Quadratic Problem:

min
x

xTA0x+ 2b0x+ c0

s.t. xTA1x+ 2b1 + c1 ≤ 0
(1)

where Ai ∈ Sn, bi ∈ Rn, ci ∈ R.

• Lagrangian: L(x, λ) = xT (A0 + λA1)x+ 2(b0 + λ0 + λb1)Tx+ c0 + λc1

• Dual problem:

max
λ,γ

γ

s.t. λ ≥ 0[
A0 + λA1 b0 + λb1

(b0 + λb1)T c0 + λc1 − γ

]
� 0

(2)

• Strong duality: the optimal values of both problems coincide.

MONOTONICITY IN GAMES

• Given a convex subspace X ⊆ Rn, a mapping F : X → Rn is monotone if:

(F(x)− F(y))T(x− y) ≥ 0, ∀x,y ∈ X (3)

• Examples (borrowed from [4]):

• Monotone games⇒ existence of NE & algorithms that converge to NE.

• Coupling among players is limited.

• Monotonicity is a strong requirement.

POTENTIAL GAME

Consider a strategic non-cooperative game G = {Q,X , {fi}i∈Q}where

• Q is the set of Q players.

• X = X1 × . . .×XQ ⊂ Rn is the set of pure strategies, i.e. x = (xi)i∈Q ∈ Q.

• function fi : Xi → R is the payoff for player i.

• A game G is called an exact potential game if there exists a function V (x) such that

fi(xi, x−i)− fi(yi, x−i) = V (xi, x−i)− V (yi, x−i) ∀xi ∈ Xi, x−i ∈ X−i. (4)

• EQUIVALENT QUADRATIC POTENTIAL PROBLEM:

min
x

V (x) = xTA0x+ 2bT0 x+ 1Tn×1c0

s.t. xTi A
i
1xi + 2bT1ixi + c1i ≤ 0 ∀i ∈ Q.

(5)

• Potential problem has multiple constraints.

• Solving the potential problem (5) provides an NE solution of the game.

• Notation: b0 = (b0i)
Q
i=1, b1 = (b1i)

Q
i=1, c0 = (c0i)

Q
i=1, A1 = diag[A1

1, . . . , A
i
1, . . . , A

Q
1 ],

D(λ) = diag[λ] ⊗ In×n, c1 = (c1i)
Q
i=1, “diag” is the block diagonal matrix operator and

“⊗” is the Kronecker product.

PROBLEM FORMULATION

Given a set of playersQ = {1, . . . , Q}, we introduce the quadratic potential game Gp where
every player i ∈ Q has to solve

∀i ∈ Q

 min
xi∈Rn

fi(xi, x−i) = xTi A
ii
0 xi + 2

∑
j 6=i

xTj A
ij
0 xi + 2bT0ixi + c0i

s.t. hi(xi) = xTi A
i
1xi + 2bT1ixi + c1i ≤ 0

(6)

• Aii0 , Ai1 ∈ Sn, A
ij
0 ∈ Rn×n,Sn is the set of symmetric matrices of size n;

• b0i, b1i ∈ Rn are column vectors;

• c0i, c1i ∈ R are scalar numbers.

• The game is potential if, and only if, its Jacobian given by

A0 =

A
11
0 · · · A1N

0
...

. . .
...

AN1
0 · · · ANN0

 ,
is symmetric, i.e., Aij0 = (Aji0 )T .

Aii0 , Ai1do not need to be positive semidefinite. The problems do not need to be convex.

The quadratic game does not need to be monotone.

ANALYSIS RESULTS OVER THE POTENTIAL PROBLEM

• Strong duality: primal problem can be solved through the dual

q(λ) =


−(b0 +D(λ)b1)T (A0 +D(λ)A1)†(b0 +D(λ)b1)

+1Tn×1c0 + λT c1 if A0 +D(λ)A1 � 0

and (b0 +D(λ)b1) ∈ R(A0 +D(λ)A1)

−∞ otherwise.

• Coercivity: lim
‖λ‖→∞

q(λ)→ −∞

• Existence of solution⇔ existence of NE⇔
{
λ ∈ RQ+ |A0 +D(λ)A1 � 0

}
is nonempty.

APPLICATIONS

• Optimal localization (Non-Convex)

min
x∈Rn

∑
i∈Q

(d2
i − ‖x− yi‖2)2

• Robust Least Squares (MinMax)

min
x∈Rn

max
{‖(∆i, δi)‖≤Γi}i∈Q

‖(A+ ∆)x− δ − b‖

ALGORITHMS

• Centralized: solve concave problem q(λ) and calculate

x∗ ∈ −(A0 +D(λ∗)A1)†(bT0 + bT1 D(λ)) +N (A0 +D(λ∗)A1)

where x∗ is an NE of Gp, and N (Z) represents the nullspace of Z.

• Distributed:

Algorithm 1 Distributed Jacobi scheme (Ai1 � 0 ∀i ∈ Q)
1: Initialize (x0

i )i. Determine λmin
i ∀i. Set k ← 0.

2: while ‖xk − xk−1‖ ≥ εouter do
3: Set k ← k + 1.
4: Calculate bgi = b0i +

∑
j 6=iA

ij
0 xj , ∀i //Mix strategies

5: for i ∈ Q do
6: Set λi = λmin

i , λi = 2λmin
i + 1, and xi = x̂i(λi, bgi).

7: while hi(xi) ≥ 0 do //Find bisection limits
8: Update λi = λi; λi = 2λi. Solve xi = x̂i(λi, bgi)

9: Set Ψcost ≥ εinner

10: while |Ψcost | ≥ εinner do //Perform bisection steps
11: Set λk

i = 1
2
(λi + λi), determine xki = x̂i(λ

k
i , bgi).

12: if hi(xi) ≤ 0, then λi = λi

13: else, λi = λi.
14: if λk

i > 0, then Ψcost = hi(x
k
i ) //Slackness violation

15: else, Ψcost = 0 //case λi ≈ 0

16: Solve (λk
i )Qi=1 = ΠΓ((λk

i )Qi=1), update xki = x̂i(λ
k
i , bgi).

SIMULATIONS

• 200 simulated games, Q = 10 payers, and n = 4.
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