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INTRODUCTION AND CONTRIBUTIONS

The process of registering a pair of fundus images, captured at different scales and viewing angles,

is of paramount importance to support the diagnosis of diseases and rouধne eye examinaধons.

In this paper, we propose an end-to-end unsupervised learning registraধon framework that uni-

fies Convoluধonal Neural Network (CNN) and Spaধal Transformer Network (STN).

The proposed technique takes advantage of a similarity metric that gauges the difference be-

tween the fixed and transformed images, allowing for performing the registraধon task without

any ground-truth data.

In summary, the main contribuধons of this paper are:

A fully end-to-end framework for performing reধna image registraধon using Deep Learning

techniques.

A neural network architecture that learns the registraধon task without using any

ground-truth data or arধficially created benchmark features.

A funcধonal and effecধve registraধon method capable of operaধng with disধnct classes of

fundus image pairs.

Once our network is fully trained, it can achieve one-shot registraধons by just providing the

desired pair of fundus images

THE PROPOSED FRAMEWORK

The proposed framework combines the neural network architecture U-Net [10] with the learning

scheme recently proposed by Vos et al [2], where a Convoluধonal Neural Network esধmates a

set of matching points from the images, used by a Spaধal Transformer Networks [6] to generate

a deformaধon field which leads to the definiধve bilinear interpolaধon.

First, the target fundus images go through a segmentaধon step that captures and highlights their

main structures, such as blood vessels and ocular shape. Such a task is performed by applying

the so-called Isotropic Undecimated Wavelet Transform (IUWT) [1], which in essence computes

and takes the transformaধon coefficients of the images to binarize IRef and IMov.

Our deep learning pipeline relies on the U-Net architecture and the steps as follows:

1. The network gets as input the pair of concatenated segmentaধons, passing them to a block

of convoluধonal layers.

2. Two downsample blocks, composed of two convoluধonal layers and a max pooling layer,

resample the images by halving their resoluধon while increasing the number of analyzed

features per block. The subsequent block of layers (upsample process) is formed by a

deconvoluধon layer and two convoluধonal layers. Each convoluধonal layer is followed by the

ReLU acধvaধon funcধon, and a Batch Normalizaࣅon scheme.

3. The outputs of each level from the downsample block are concatenated with the entry of the

corresponding level in the upsample block.

4. The last layer, which is formed by two kernels, applies a linear acধvaধon funcধon so as to

generate the grid of points corresponding to the dimensions of the input images.

The output generated by the CNN, which gives a deformaধon grid, serves as input to the STN

so that a bilinear interpolaধon is computed for aligning the images.

Once the image pair is properly registered, the loss funcধon is then calculated via the Normalized

Cross-Correlaধon (NCC) metric (1), which gauges the overlap among both fixed and processed

images without the need for ground-truth data:
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where Ti,j = t(x+ i, y + j)− t̄x,y, Ri,j = r(i, j)− r̄, t(i, j) and r(i, j) are the pixel values at (i, j) of
the matching and reference images, BTrans and BRef , respecধvely, and r̄ and t̄ are the average
pixel values w.r.t. BRef , and BTrans [8].

The learning pipeline is opধmized unধl convergence by the ADAM algorithm [7].

The process of applying the deformable transformaধon to the moving image may eventually

cause the presence of noise, especially if the images are very disধnct from each other. To cir-

cumvent this, we add a post-processing step to filter out the noise via Connected Component

Analysis (CCA) [3].

DATA SETS, METRICS AND ASSESSED METHODS

Our framework was implemented in Python language (packages OpenCV, Tensorflow, and Keras).

To run the experiments, we took the well-established FIRE database (Fundus Image Registraࣅon

Dataset) [5].

Our network architecture was trained using images of 512× 512 pixels, from category S of FIRE

database, with eight batches, for 5000 epochs. The tests were accomplished for all the three FIRE
image categories in order to inspect how the network would behave when applied to different

groups of fundus images.

Four very recent image registraধon methods were taken in our validaধon analysis: Hernandez-

Matas et al. [4], Wang et al. [11], Moħa et al [9] and Vos et al. [2], namely here as Rempe, GFEMR,

VOTUS, and DIRNet, respecধvely.

To quanধtaধvely assess the registraধon results, the following similarity metrics were taken: Mean

Squared Error (MSE), Structural Similarity Index Measure (SSIM), and Dice Coefficient (Dice).

RESULTS AND DISCUSSION

QUANTITATIVE EVALUATION

Table 1 summarizes the mean and standard deviaধon for the registraধon results produced by

each method for the three categories of FIRE database.

By numerically checking the values, our approach was the one that delivered the best scores for

all metrics and analyzed data sets.

A parধcular advantage of our approach is that since other methods were not able to fully register

a few image pairs from category P , we pull off these parধcular cases of failures and compute

scores for success cases only. In contrast, our framework was capable to align the image pairs

regardless of the category and overlap level.

Table 1. Quanধtaধve analysis of the registraধon methods.

Methods
FIRE Dataset

A S P

MSE (←)

Before 0.0962 (0.0177) 0.0965 (0.0198) 0.1249 (0.0066)

Proposed 0.0068 (0.0015) 0.0062 (0.0017) 0.0121 (0.0027)

GFEMR 0.0522 (0.0145) 0.0280 (0.0053) 0.0525 (0.0095)

Rempe 0.0487 (0.0240) 0.0196 (0.0056) 0.0616 (0.0132)

VOTUS 0.0525 (0.0229) 0.0189 (0.0052) 0.0514 (0.0119)

DIRNet 0.0710 (0.0182) 0.0601 (0.0237) 0.1040 (0.0070)

SSIM (→)

Before 0.7307 (0.0421) 0.7237 (0.0457) 0.6510 (0.0177)

Proposed 0.9731 (0.0055) 0.9749 (0.0068) 0.9575 (0.0076)

GFEMR 0.8325 (0.0350) 0.8918 (0.0168) 0.8247 (0.0262)

Rempe 0.8453 (0.0650) 0.9211 (0.0184) 0.8014 (0.0386)

VOTUS 0.8317 (0.0562) 0.9232 (0.0180) 0.8279 (0.0340)

DIRNet 0.7852 (0.0459) 0.8099 (0.0611) 0.6816 (0.0173)

Dice (→)

Before 0.2982 (0.1088) 0.3418 (0.1384) 0.1245 (0.0119)

Proposed 0.9502 (0.0100) 0.9579 (0.0120) 0.9103 (0.0238)

GFEMR 0.6023 (0.1343) 0.8022 (0.0392) 0.5919 (0.0922)

Rempe 0.6295 (0.1981) 0.8649 (0.0425) 0.5227 (0.1231)

VOTUS 0.6105 (0.1802) 0.8702 (0.0388) 0.6149 (0.1004)

DIRNet 0.4982 (0.1111) 0.6020 (0.1519) 0.2630 (0.0197)

QUALITATIVE EVALUATION

In Figure 1, the aligned images were grouped based on different colorizaধons. Here, BRef brings

the reference image (in green), while BMov and BTrans present the moving image before and af-

ter the registraধon (in magenta). The definiধve image composiধon gives the amount of overlap

between BRef and BTrans (in white).

One can observe that our trained model achieves more consistent and pleasant results when

compared against other methods, mainly w.r.t. the quality of matching refinement, as depicted

by a large amount of white color in the montages.

Figure 1. Qualitaধve comparison between registraধon results for a pair of images ađer registraধon by all the

methods.

CONCLUSIONS

This paper proposed an end-to-end framework for deformable registraধon of reধnal images,

which was designed to operate in an unsupervised manner so that it does not require any extra

mechanism to induce arধficially created ground-truth data for training. Once themodel is trained,

it allows for one-shot registraধons by just providing the pair of fundus images.

In contrast to other modern image registraধon methods, our approach produced definiধve reg-

istraধons regardless of the overlap degree and anatomical changes present in the images. As

verified by the experiments with three disধnct classes of reধna images, our framework was able

to outperform the others, both in qualitaধve and quanধtaধve aspects.

In summary, all those properধes render the proposed framework a useful and compelling unsu-

pervised registraধon technique for fundus images, achieving a high level of accuracy even in the

absence of ground-truth data or large labeled data sets to train a definiধve model.
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