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System Model
• We consider an interference channel with 𝑚 transmitter-receiver pairs 
(𝑇𝑥! , 𝑅𝑥!) !"#

$

• The channel gain between 𝑇𝑥! and 𝑅𝑥% is denoted by ℎ!%
• The entire network channel matrix: 𝐇 ∈ ℂ!×!

• The channel is modeled as 𝐇 = 𝐇ℓ𝐇$ , comprising long-term (𝐇ℓ) and short-term 
(𝐇$) fading components

• The signal-to-interference-plus-noise ratio (SINR) at 𝑅𝑥! can be written 
as

• The Shannon capacity between 𝑇𝑥! and 𝑅𝑥! is then given by
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Resilient power allocation formulation
• Our goal is to learn a power allocation policy that manages the 

interference among these concurrent transmissions, and optimizes two 
metrics of interest:
• Sum throughput, representing the “cell-center” performance, and

• 5th percentile throughput, representing the “cell-edge” performance.

• The slack variables adapt the constraints to the underlying channel 
conditions, hence helping to treat cell-edge and cell-center users fairly

• 𝐱(𝐇ℓ): Ergodic average rate
• 𝒰(⋅): Concave utility
• 𝑃#$%: Maximum transmit power
• 𝑓#&': Minimum ergodic rate constraint
• 𝐳(𝐇ℓ): Slack variables

Parameterized primal-dual unsupervised learning
• The Lagrangian function can be written as follows:

• We then replace each policy 𝐲(⋅)with a parameterized version 𝐲(⋅; 𝜽𝐲), 
leading to the parameterized Lagrangian

And the parameterized dual problem,

Dual multiplier functions

• We then update the primal and dual parameters by iteratively 
performing gradient ascent/descent steps as follows:

Graph neural network- (GNN-)based 
parameterizations
• We model the wireless network as a graph 𝒢 = 𝒱, ℰ, 𝑟, 𝑤
• 𝒱 = 1,… ,𝑚 : Set of graph nodes

• ℰ = 𝒱%\ 𝑖, 𝑖 &∈𝒱: Set of graph edges

• 𝑟: 𝒱 → ℝ)!: Initial node feature function

• 𝑤: ℰ → ℝ: Edge weight function

• For each node 𝑣 ∈ 𝒱, we let 𝐲'( = 𝑟(𝑣) denote its initial feature vector

• Then, the features get transformed through multiple layers, where 
the feature vector of node 𝑣 at layer 𝑙 can be written as

• We denote the final feature vector of node 𝑣, i.e., its node embedding, 
as 𝐬'
• We then use three GNNs to parameterize the primal/dual policies:
• Main GNN (responsible for 𝐩(⋅)): The power level of 𝑇𝑥& is given by

• Auxiliary GNN (responsible for 𝐱(⋅) and 𝐳(⋅)): The variables for (𝑇𝑥& , 𝑅𝑥&) are 
given by

• Dual GNN (responsible for 𝛌(⋅) and 𝝁(⋅)): The variables for (𝑇𝑥& , 𝑅𝑥&) are 
given by

Experimental evaluation

• We evaluate the proposed method on networks with 6-14
transmitter-receiver pairs

• Our proposed algorithm learns how to adaptively elevate the slack 
variable for larger and denser networks to make the optimization 
problem feasible and maximize the sum-rate utility function.

• This leads to a much fairer resource allocation policy, where a 
superior trade-off between the sum-rate and the 5th percentile rate 
can be achieved.


