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Introduction

» Despite the recent achievements in speech recognition (ASR) domain, resource constrained
ASR is still a challenge;

» Proposed approach is for labelled ASR and accounts for a lack of training data and diverse
noise/quality conditions based on the idea of curriculum learning.

Curriculum learning is a machine learning strategy of imitating human study behavior;

» We define curriculum as a set of tasks organized in order of increasing complexity. A ranking
function is used to determine the complexity of the input data;

» The proposed method aims to leverage the prior distribution of the training data as well as the
learner's progress to optimize the sequence of ASR inputs by using multi-armed bandit
(MAB) [2,3].
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Contributions

* We proposed a new complexity metric, compression ratio, able to rank audio signals
in diverse noise/background conditions;

* Our model achieves the maximum of 33% and the minimum of 5% relative WER
improvement;

» We show the analysis of the curriculum policy generated by MAB algorithms.
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Curriculum Learning & Complexity Measures

In curriculum learning the model is fed input data scored by a ranking function in order of increasing
complexity; we hypothesize that signal-based features have more significance for ASR than text-

based features.
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mixtures at different SNRs (data from NOIZEUS) [4].
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Curriculum Definition

« Given a ranking function f( - ) the inputs are scored and sorted in non-increasing order
and split into a set of K tasks with equal number of mini-batches:

D - {DI’DZ’DS’ .o ’DK}

» To use the prior distribution of the training data and the learner’s progress
simultaneously we apply multi-armed bandit algorithms.
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Multi-Armed Bandits (MAB)

Reinforcement Learning (RL) concepts: agent, environment, policy n, reward R.
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Source: Sutton and Barto, Reinforcement Learning: Introduction, 1998.
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Multi-Armed Bandits (MAB) Cont.

Our agent is represented by the k-armed bandit which aims to collect the maximum expected

reward R over T training iterations. At each iteration ¢ the agent selects the best action k and
updates the policy based on the reward

The reward based on the loss-driven self-prediction gain proposed in [1]:
vspg = L(B',0) — L(B,0) B’ ~ D,

where B'is the batch sampled from D;;

6 denotes parameters of the model;

L is the loss function.
Probabilistic: EXP3.S [2]
Deterministic: SWUCB# [3]
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Curriculum Learning Algorithm

Algorithm 1: Curriculum Learning

Initialize: D = f(X), 7 « 0;
begin

fort — T do

Draw k based on current 7;
B; . + sample(Dy,);

Train the model on B; ;
Observe progress gain vspa;
re < 9(VspG);

Update 7 on 7;

end
end
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Experimental Setup

ESPNet Common Voice Recipe [4] Common Voice 7.0 dataset

Features 80-dim log-mel filterbanks Eu Fy Ky Tt Cv

Augmentation SpecAugment Train 45:08 18:25 24:17 19:27 1:41
Dev 8:03 4:14 2:07 2:47 0:45

Encoder 9blocks Test 834 425 2:12 507 1:08

Conformer 4 self-attention heads

Decoder 6 blocks

Transformer 4 self-attention heads

Optimizer Adam , 25k steps warmup

Pretraining CV 7.0 English, WER 15.2
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Results

WER CER
Model Cv Fy Tt Ky Eu Cv Fy Tt Ky Eu
ESPNet + Trans 614 96 235 55 75 159 31 59 23 15

EXP3.S + CR 418 78 223 41 75 98 26 56 19 15
EXP3.S + SL 411 93 279 64 93 9.7 33 74 30 20
EXP3.S + SN 427 78 242 48 81 102 25 62 22 1.7
SW-UCB#+CR 427 75 221 40 80 100 25 54 18 1.6
SW-UCB#+SL 424 109 240 6.7 100 99 36 63 30 22
SW-UCB#+SN 426 86 248 53 86 101 28 64 22 1.8

Table 2. The table shows WER and CER for five selected languages. Results in bold indicate the improvement over the
baseline, underlined values indicate best result overall. Baseline results with bare transfer learning are shown in the first row.
The results below show the combinations of the algorithm and complexity metric, CR — Compression Ratio, SL — Sentence
Length, SN — Sentence Norm for K = 10.
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Results Cont.

EXP3.S CR

Average Policy Values

Epochs

Policy values for all k started with uniform distribution. The hardest task £ = 10 initially gets the highest
value; by the end of the training k = 1 increases the value.
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Conclusion

* The proposed method improves WER on 4 Common Voice languages: Cv,
Fy, Tt, Ky;

« The combination of data derived prior and learner’s progress curriculum
yields better results;

« We confirmed out hypothesis that signal-based prior is more effective for
ASR than text-based prior.
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