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A study of the robustness of raw waveform based speaker embeddings 
under mismatched conditions

Channel mismatch in waveform speaker embedding modeling https://github.com/gzhu06/TDspkr-mismatch-study



•Mel fbank may not optimal: 
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Figure: Joakim Andén, Stéphane Mallat. Deep Scattering Spectrum. IEEE TRANSACTIONS ON SIGNAL PROCESSING

Why we are interested in raw waveform?
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Why we are interested in raw waveform?
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Figure: Xugang Lu, Jianwu Dang. An investigation of dependencies between frequency components and speaker characteristics for text-independent speaker identification. Speech Communication

•Frequency resolution in Mel scale 
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Table: GitHub repo for WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing

Speaker verification

Modern unsupervised/self-supervised speech frontend applies waveform as audio inputs:

Why we are interested in raw waveform?
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Prior Works

Left Figure: Waveform-based music processing with deep learning. ISMIR 2019 Tutorial

https://github.com/gzhu06/TDspkr-mismatch-studyChannel mismatch in waveform speaker embedding modeling
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Channel Mismatch Problem

•Filters in the first layer conduct quasi time-frequency analysis,  but tend to 
capture task-irrelevant aspects of the waveforms

https://github.com/gzhu06/TDspkr-mismatch-studyChannel mismatch in waveform speaker embedding modeling
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Different audio frontend SV performance under channel mismatch

Experimental design:  

• Train dataset: augmented VoxCeleb2 

• Test dataset:  Full VoxCeleb1 (in-domain) and VOiCEs (out-of-domain) 

• Audio frontends: MFBank, Sinc, TDF, MultiScale with 25ms long, 30 channels/filters 

• Common backbone for embedding network
•
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Different audio frontend SV performance under channel mismatch

•Results:
•
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Proposed strategies

•Analytical Filters: modulus of filtered signal is shift-invariant 

https://github.com/gzhu06/TDspkr-mismatch-studyChannel mismatch in waveform speaker embedding modeling
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*Shift-invariant time-frequency representation 

A general form of a magnitude-wise shift invariant linear time-frequency 
representation given signal x(t):

https://github.com/gzhu06/TDspkr-mismatch-studyChannel mismatch in waveform speaker embedding modeling

Lütfiye Durak and Orhan Arıkan Short-Time Fourier Transform: Two Fundamental Properties and an Optimal Implementation. IEEE TRANSACTIONS ON SIGNAL PROCESSING 
Hilbert transform. WIKIPedia

Analytic representation assuming filterbanks are narrowband models:
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Proposed strategies

•Variational dropout on learned 
noisy filterbanks:

  Discard noisy filterbank 
  weights in a smart way
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Proposed strategies

Variational dropout

• Dropout: multiplying masks to NN weights.
•

image: towardsdatascience.com/12-main-dropout-methods-mathematical-and-visual-explanation
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Proposed strategies

Variational dropout

• Gaussian dropout:  is fixedα =
p

1 − p

• Variational dropout:      is learned for each weight
 

αij

https://github.com/gzhu06/TDspkr-mismatch-studyChannel mismatch in waveform speaker embedding modeling

At inference:
Threshold, drop the weightsαij >



15

Experiments
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(1) Ablations on improvement of analyticity:
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Experiments
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(2) Ablations on improvement of variational dropout:
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(2) Variational dropout

Train on clean data

Train on noisy data

Train on noisy data 
with variational dropout

Experiments
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Experiments
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(2) System comparisons
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Experiments
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(2) System comparisons



• We studied cross channel speaker verification performance of raw-waveform 
based speaker embeddings

• We proposed to introduce (1) analyticity and (2) variational dropout to 
alleviate the performance mismatch
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Conclusions


