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Abstract

We investigate the cross-dataset speaker verifi-
cation performance using raw-waveform based
speaker embeddings and observe a more signif-
icant performance degradation compared to spec-

tral based systems. To improve raw-waveform
models’ cross-dataset performance, we replace the
real-valued filters into analytic filters to en-
sure shift invariance; we also apply variational
dropout to non-parametric filters to prevent them
from overfitting irrelevant nuance features. By
combining these strategies, we achieve results

comparable to spectral based systems on both the

VoxCeleb and VOICEs datasets.

Time-domain Speaker Embedding

Potential problems for spectral based features:
e Hand-crafted features are not necessarily optimal;
e Mel-spectral transform is lossy.
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Two strategies to learn from raw waveforms:
e Non-parametric filterbank with regularization;
® Pre-defined parametric filterbanks.

Learnable Blocks

e S

Recent self-supervised speech representation pretrain-
ing frameworks, such as wav2vec and WavlLM, use
waveform as input.
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Channel Mismatch Problem

Comparison of raw-waveform based and mel-
spectrum based speaker embeddings under both
matched and mismatched conditions.

e Dataset: train on noise augmented Vox2, test on
in-domain full Vox1 and out-of-domain VOICEs;

e Audio frontend: Mel-fbank, MFCC, Sinc, TDF;
e L earnable blocks:

Waveform Embedding
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Spk Embedding

(a) Common backbone (b) Down-sampling Block

o We use equal error rate (EER) to evaluate verifica-
tion performance scoring with cosine similarity:
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e Visualization of learned filters:
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Proposed Strategies

Down-sampled convolutions or pooling layers are not
shift-invariant, and they compromise performance on
robust classification tasks.

e [he modulus of convolution between real-valued in-
put signals s(t) and analytic filters z,(t) are shift-
invariant with respect to time:

y(t) = |s(t) * z(t)

e To obtain analytic filter on any given real-valued
filter s(t), we can apply Hilbert transform:
2(t) = s(t) + jHA(s(t)}
1

Hils(t)} = s(t) * —

Observing learned filter responses trained with noisy
datasets, the non-parametric filters tend to overfit the
noisy training data, learning task-irrelevant aspects of
the recordings.
Variational dropout is a Bayesian regularization tech-
nique to help avoid overfitting:
® Dropout can be seen as masking neural network
(NN) Weights, Wi = mijﬁij:
@ Standard dropout is binary mask m;; ~ Bern(p);
® Gaussian dropout is a ratio mask:

m;; ~ N(1,a =p(l —p)).

e Equivalently, variational dropout can be seen as ap-

plying an independent Gaussian mask parameterized
with «;; to every weight w;; instead of a fixed pa-
rameter o in Gaussian dropout.

® During training, «;; is learned through stochastic
optimization using an approximated KL-divergence.

® During inference, a threshold is set for «;;: if it is
larger than the threshold, i.e., the corresponding w;;
is stochastic enough, w;; is then discarded.

The proposed strategies above do not bring extra pa-
rameters at inference. In fact, variational dropout
can sparsify learned filterbank weights.

Results

We repeat the experiments in both matched and mis-
matched conditions and use PLDA scoring as the

backend.

Frontend Vox1-O Voxl-E Vox1-H VOIiCEs

SINC 237 232 402 855
SINC-H 215 228 391  8.90
TDF 1.96 2.19 3.85 8.38
TDF-H 201 227 398 7.46
TDF-VD 198 230 405 7.68
TDF-H-VD 199 226 393 7.40

Mel-Fbank 2.04 2.17 3.79 7.10
MFCC (Kaldi) 226 237 414 6.79

e Analyticity constraint helps non-parametric filters to
learn robust representations, but this is not the case
for parametric filters.

e Variational dropout improves the performance of
non-parametric filterbanks on VOICEs.

Visualization of learned filters trained on noise aug-
mented VoxCeleb after applying variational dropout:
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