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Abstract

We investigate the cross-dataset speaker verifi-
cation performance using raw-waveform based
speaker embeddings and observe a more signif-
icant performance degradation compared to spec-
tral based systems. To improve raw-waveform
models’ cross-dataset performance, we replace the
real-valued filters into analytic filters to en-
sure shift invariance; we also apply variational
dropout to non-parametric filters to prevent them
from overfitting irrelevant nuance features. By
combining these strategies, we achieve results
comparable to spectral based systems on both the
VoxCeleb and VOiCEs datasets.

Time-domain Speaker Embedding

Potential problems for spectral based features:
• Hand-crafted features are not necessarily optimal;
• Mel-spectral transform is lossy.

Two strategies to learn from raw waveforms:
• Non-parametric filterbank with regularization;
• Pre-defined parametric filterbanks.

Recent self-supervised speech representation pretrain-
ing frameworks, such as wav2vec and WavLM, use
waveform as input.

Channel Mismatch Problem

Comparison of raw-waveform based and mel-
spectrum based speaker embeddings under both
matched and mismatched conditions.
• Dataset: train on noise augmented Vox2, test on

in-domain full Vox1 and out-of-domain VOiCEs;
• Audio frontend: Mel-fbank, MFCC, Sinc, TDF;
• Learnable blocks:

• We use equal error rate (EER) to evaluate verifica-
tion performance scoring with cosine similarity:
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• Visualization of learned filters:

Proposed Strategies

Down-sampled convolutions or pooling layers are not
shift-invariant, and they compromise performance on
robust classification tasks.
• The modulus of convolution between real-valued in-

put signals s(t) and analytic filters za(t) are shift-
invariant with respect to time:

y(t) = |s(t) ∗ za(t)|
• To obtain analytic filter on any given real-valued

filter s(t), we can apply Hilbert transform:
z(t) = s(t) + jH{(s(t)}

H{(s(t)} = s(t) ∗ 1
πt

Observing learned filter responses trained with noisy
datasets, the non-parametric filters tend to overfit the
noisy training data, learning task-irrelevant aspects of
the recordings.
Variational dropout is a Bayesian regularization tech-
nique to help avoid overfitting:
• Dropout can be seen as masking neural network

(NN) weights, wij = mijθij:
1 Standard dropout is binary mask mij ∼ Bern(p);
2 Gaussian dropout is a ratio mask:

mij ∼ N (1, α = p(1 − p)).

• Equivalently, variational dropout can be seen as ap-
plying an independent Gaussian mask parameterized
with αij to every weight wij instead of a fixed pa-
rameter α in Gaussian dropout.

• During training, αij is learned through stochastic
optimization using an approximated KL-divergence.

• During inference, a threshold is set for αij: if it is
larger than the threshold, i.e., the corresponding wij

is stochastic enough, wij is then discarded.

The proposed strategies above do not bring extra pa-
rameters at inference. In fact, variational dropout
can sparsify learned filterbank weights.

Results

We repeat the experiments in both matched and mis-
matched conditions and use PLDA scoring as the
backend.

Frontend Vox1-O Vox1-E Vox1-H VOiCEs
Sinc 2.37 2.32 4.02 8.55

Sinc-H 2.15 2.28 3.91 8.90
TDF 1.98 2.19 3.85 8.38

TDF-H 2.01 2.27 3.98 7.46
TDF-VD 1.98 2.30 4.05 7.68

TDF-H-VD 1.99 2.26 3.93 7.40
Mel-Fbank 2.04 2.17 3.79 7.10

MFCC (Kaldi) 2.26 2.37 4.14 6.79

• Analyticity constraint helps non-parametric filters to
learn robust representations, but this is not the case
for parametric filters.

• Variational dropout improves the performance of
non-parametric filterbanks on VOiCEs.

Visualization of learned filters trained on noise aug-
mented VoxCeleb after applying variational dropout:
Top row: ‘TDF+H’ filters. Bottom row:
‘TDF+H+VD’ filters.
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