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Motivation
Despite recent success in developing effective solutions for spoofing detection, little is known to 
understand what information is being used to influence the classifier output.

In this paper we
❏ Use SHapley Additive exPlanations (SHAP) to gain insights about how anti-spoofing solutions work.
❏ Analyse difference between classifiers, also the difference between sub-band features.

Definition
SHAP value φi can be both positive and negative 
to reflect the relative (un)importance of a 
particular feature to a classifier output. To 
obtained φi , a classifier f(x) is trained twice, with 
and without the inclusion of a chosen feature i :

where S is a feature subset of full set of features 
F, and δi is the prediction difference of feature i 
being presented and absent.

When the classifier f(x) is a complex model, 
such as a deep neural network, to avoid 
repetitive retraining of the network, the 
calculation of SHAP value is simplified to:

where g(x) is the approximated explanation 
model of , and x′ is the simplified feature that 
only contains 0 (absence of feature) or 1 
(presence of feature).

The obtained SHAP values are of the same 
size as the input feature, and can be visualised 
in a similar manner to the spectrogram.

An audio waveform is shown in (a), and the corresponding temporal-spectral spectrogram is shown in 
(b). SHAP values for bona fide class are shown in (c) and (d), each with positive value being red and 
negative value being blue.

Visualisation
❏ Only positive SHAP values for both classes are shown; negative values 

are approximately symmetric to the positive values.
❏ Average SHAP values are shown across the full spectrum, focusing on 

either temporal axis or spectral axis.

Temporal analysis
❏ A spoofed audio file from ASVspoof2019 LA Evaluation set, 

LA_E_4428024.
❏ In subfigure (b), the averaged SHAP values for both bonafide and spoof 

are higher in the speech interval, while in (c), values are higher in the 
non-speech interval.

❏ The 2D-Res-TSSDNet model detects artefacts in speech intervals, while 
the PC-DARTS model uses information mostly in non-speech intervals. 

Spectral analysis
❏ A spoofed audio file from ASVspoof2019 LA Evaluation set, 

LA_E_2634822.
❏ A greater support for bona fide class can be noticed at 0.5kHz, while 

for spoofed class, it’s 0.6kHz.
❏ This may imply that the artefacts for detecting two classes are 

located at different frequency regions.
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Conclusion

❏ SHAP values can reveal the influence of  individual features upon classifier behaviour.
❏ For a given classifier, SHAP values can be used to highlight the attention of the  classifier at low-level 

spectro-temporal level.
❏ DNN models can use different temporal or spectral intervals from the same waveform input for decision making.
❏ Future work includes using SHAP to explore differences between spoofing attack algorithms, and to explain the 

performance difference among well-trained classifiers.
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