PRIVACY PROTECTION IN LEARNING FAIR REPRESENTATIONS

Yulu Jin, Lifeng Lai
University of California, Davis

May 2022

Overview

(1) Introduction

(2) The Proposed Method
(3) Numerical Examples

4 Conclusion

Outline

(1) Introduction

(2) The Proposed Method

(3) Numerical Examples
(4) Conclusion

Internet of Things

- The Internet of Things (loT) devices.

Inference as a service

- The Internet of Things (loT) devices.
- Inference as a service (IAS).

- However, IAS brings privacy issues.

Fairness issue

- Main purpose: ensure that the inference decisions do not reflect discriminatory behavior toward certain groups or populations.
- Example: Correctional Offender Management Profiling for Alternative Sanctions (COMPAS), a software that measures the risk of a person to recommit another crime.
- Potential sources of unfairness: those arising from biases in the data and those arising from the algorithms.
- A variety of methods have been proposed that satisfy some of the fairness definitions or other new definitions depending on the application

Our goal

- Our goal is to address the fairness and privacy issues simultaneously in the IAS design.
- Instead of sending data directly to the server, we preprocess the data through a transformation map.
- Analyze the trade-off among data utility, fairness representation and privacy protection.
- Formulate an optimization problem to find the optimal transformation map.

Outline

(2) The Proposed Method
(3) Numerical Examples

4 Conclusion

Problem Statement and Notations

Device

Server

The optimization problem is

$$
\begin{aligned}
& \max _{P_{U \mid Y}} \mathcal{F}\left[P_{U \mid Y}\right] \triangleq I(S ; U)-\beta \mathbb{E}_{Y, U}\left[f\left(\frac{p(u \mid y)}{p(u)}\right)\right]-\alpha I(Z ; U), \\
& \text { s.t. } p(u \mid y) \geq \epsilon, \forall y, u, \sum_{u} p(u \mid y)=1, \forall y \in \mathcal{Y} .
\end{aligned}
$$

Problem Statement and Notations

$$
\begin{array}{ll}
\max _{P_{U \mid Y}} & \mathcal{F}\left[P_{U \mid Y}\right] \triangleq I(S ; U)-\beta \mathbb{E}_{Y, U}\left[f\left(\frac{p(u \mid y)}{p(u)}\right)\right]-\alpha I(Z ; U) \\
\text { s.t. } & p(u \mid y) \geq \epsilon, \forall y, u, \sum_{u} p(u \mid y)=1, \forall y \in \mathcal{Y} \tag{2}
\end{array}
$$

where $d(y, u)=f\left(\frac{p(y)}{p(y \mid u)}\right)$ and f is a continuous function defined on $(0,+\infty)$.

- The proposed framework in (1) is general with respect to the privacy metric. For $f(\cdot)=\log (\cdot)$, we have

$$
\begin{aligned}
\mathbb{E}_{Y, U} & {[d(y, u)]=\sum_{y, u} p(y) p(u \mid y) \log \left(\frac{p(u)}{p(u \mid y)}\right) } \\
& =-\sum_{y} p(y) D_{K L}[p(u \mid y) \| p(u)]=-I[U ; Y]
\end{aligned}
$$

As the result, we will use mutual information between U and Y to measure information leakage.

Alternating optimization

Lemma 1

$$
I(S ; U)=I(S ; Y)-\sum_{u, y} p(y) p(u \mid y) D_{K L}[p(s \mid y) \| p(s \mid u)]
$$

Then the objective function defined in (1) can be written as

$$
\begin{aligned}
& \mathcal{F}\left[P_{U \mid Y}, P_{U}, P_{Z \mid U}, P_{S \mid U}\right]=I(S ; Y)+\beta \mathbb{E}_{Y, U}[d(y, u)] \\
& \quad-\sum_{u, y} p(y) p(u \mid y) D_{K L}[p(s \mid y) \| p(s \mid u)]-\alpha I(Z ; U) .
\end{aligned}
$$

Alternating optimization

Lemma 1

$$
I(S ; U)=I(S ; Y)-\sum_{u, y} p(y) p(u \mid y) D_{K L}[p(s \mid y) \| p(s \mid u)]
$$

Then the objective function defined in (1) can be written as

$$
\begin{aligned}
\mathcal{F}\left[P_{U \mid Y},\right. & \left.P_{U}, P_{Z \mid U}, P_{S \mid U}\right]=I(S ; Y)+\beta \mathbb{E}_{Y, U}[d(y, u)] \\
& -\sum_{u, y} p(y) p(u \mid y) D_{K L}[p(s \mid y) \| p(s \mid u)]-\alpha I(Z ; U) .
\end{aligned}
$$

For consistency, we require the following equations to be satisfied simultaneously

$$
\begin{align*}
& p(u)=\sum_{y} p(u \mid y) p(y), \forall u, \tag{3}\\
& p(z \mid u)=\frac{\sum_{y} p(u \mid y) p(z, y)}{p(u)}, \tag{4}\\
& p(s \mid u)=\frac{\sum_{y} p(u \mid y) p(s, y)}{p(u)} . \tag{5}
\end{align*}
$$

Concavity

$$
\begin{aligned}
& \max _{P_{S \mid U}} \max _{P_{Z \mid U}} \max _{P_{U}} \max _{P_{U \mid Y}} \mathcal{F}\left[P_{U \mid Y}, P_{U}, P_{Z \mid U}, P_{S \mid U}\right] . \\
& \text { s.t. } p(u \mid y) \geq \epsilon, \forall y, u, \quad \sum_{u} p(u \mid y)=1, \forall y, \\
& p(u)>0, \forall u, \quad \sum_{u} p(u)=1,(3), \\
& p(z \mid u) \geq 0, \forall u, z, \sum_{z} p(z \mid u)=1, \forall u,(4), \\
& p(s \mid u) \geq 0, \forall u, s, \sum_{s} p(s \mid u)=1, \forall u,(5) .
\end{aligned}
$$

- Lemma 2 Suppose that $f(\cdot)$ is a strictly convex function. Then for given $P_{U}, P_{Z \mid U}, P_{S \mid U}$, $\mathcal{F}\left[P_{U \mid Y}, P_{U}, P_{Z \mid U}, P_{S \mid U}\right]$ is concave in each $P_{U \mid y_{i}}, \forall y_{i} \in \mathcal{Y}$. Similarly, for given $P_{U \mid Y}, P_{Z \mid U}, P_{S \mid U}$, $\mathcal{F}\left[P_{U \mid Y}, P_{U}, P_{Z \mid U}, P_{S \mid U}\right]$ is concave in P_{U}. For given $P_{U \mid Y}, P_{U}, P_{S \mid U}, \mathcal{F}\left[P_{U \mid Y}, P_{U}, P_{Z \mid U}, P_{S \mid U}\right]$ is concave in $P_{Z \mid U}$. For given $P_{U \mid Y}, P_{U}, P_{Z \mid U}, \mathcal{F}\left[P_{U \mid Y}, P_{U}, P_{Z \mid U}, P_{S \mid U}\right]$ is concave in $P_{S \mid U}$.

Concavity

$$
\begin{aligned}
& \max _{P_{S \mid U}} \max _{P_{Z \mid U}} \max _{P_{U}} \max _{P_{U \mid Y}} \mathcal{F}\left[P_{U \mid Y}, P_{U}, P_{Z \mid U}, P_{S \mid U}\right] . \\
& \text { s.t. } p(u \mid y) \geq \epsilon, \forall y, u, \quad \sum_{u} p(u \mid y)=1, \forall y, \\
& p(u)>0, \forall u, \quad \sum_{u} p(u)=1,(3), \\
& p(z \mid u) \geq 0, \forall u, z, \sum_{z} p(z \mid u)=1, \forall u,(4), \\
& p(s \mid u) \geq 0, \forall u, s, \sum_{s} p(s \mid u)=1, \forall u,(5) .
\end{aligned}
$$

- The alternating optimization problem can be solved iteratively.

Algorithm

- In the first step, given $P_{S \mid U}^{(j-1)}$ and $P_{Z \mid U}^{(j-1)}$, we obtain $P_{U \mid Y}^{(j)}$ and $P_{U}^{(j)}$ by solving

$$
\begin{array}{rl}
\max _{P_{U \mid Y}} \max _{P_{U}} & \mathcal{F}\left[P_{U \mid Y}, P_{U} \mid P_{S \mid U}^{(j-1)}, P_{Z \mid U}^{(j-1)}\right] \\
\text { s.t. } & p(u \mid y) \geq \epsilon, \forall y, u, \quad \sum_{u} p(u \mid y)=1, \forall y, p(u)>0, \forall u, \sum_{u} p(u)=1 \\
& \delta(u)=p(u)-\sum_{y} p(u \mid y) p(y)=0, \forall u
\end{array}
$$

- Apply ADMM to solve the problem.
- The optimization problem can be solved by the iterative procedure,

$$
\begin{align*}
& P_{U \mid y_{i}}^{t+1}=\arg \max _{P_{U \mid y_{i}}} \mathcal{L}\left[P_{U \mid y_{i}}, P_{U \mid Y\left({ }^{(i-)}\right.}^{t+1}, P_{U \mid Y(i))}^{t}, P_{U}^{t} ; \Lambda^{t}\right], \tag{6}\\
& P_{U}^{t+1}=\arg \max _{P_{U}} \mathcal{L}\left[P_{U \mid Y}^{t+1}, P_{U} ; \Lambda^{t}\right], \tag{7}\\
& \Lambda^{t+1}=\Lambda^{t}-\rho\left(P_{U}^{t+1}-\left(P_{U \mid Y}^{t+1}\right)^{T} P_{Y}\right) . \tag{8}
\end{align*}
$$

Algorithm

- In the second step, we obtain $P_{Z \mid U}^{(j)}$ by the consistency equation

$$
p^{(j)}(z \mid u)=\frac{\sum_{y} p^{(j)}(u \mid y) p(z, y)}{p^{(j)}(u)}
$$

- In the third step, obtain $P_{S \mid U}^{(j)}$ by solving

$$
\begin{array}{cl}
\max _{P_{S \mid U}} & \mathcal{F}\left[P_{S \mid U} \mid P_{U \mid Y}^{(j)}, P_{U}^{(j)}, P_{Z \mid U}^{(j)}\right] \\
\text { s.t. } & p(s \mid u) \geq 0, \forall u, s, \sum_{s} p(s \mid u)=1, \forall u,(5)
\end{array}
$$

which has a simple closed form solution

$$
p^{(j)}(s \mid u)=\frac{\sum_{y} p^{(j)}(u \mid y) p(s, y)}{p^{(j)}(u)}
$$

Algorithm

```
Algorithm 1 Design the optimal transformation map
Input:
Prior distribution \(P_{S}, P_{Z}\) and conditional distribution \(P_{Y \mid S, Z}\).
Trade-off parameter \(\alpha, \beta\).
Converge parameter \(\eta, \eta_{p}\).
Output:
A mapping \(P_{U \mid Y}\) from \(Y \in \mathcal{Y}\) to \(U \in \mathcal{U}\).
Initialization:
Randomly initiate \(P_{U \mid Y}\) and calculate \(P_{U}, P_{Z \mid U}, P_{S \mid U}\) by (3),
(4) and (5).
: \(j=1\).
while \(\left\|P_{S \mid U}^{(j)}-P_{S \mid U}^{(j-1)}\right\|_{F}>\eta\) do
    \(P_{U}^{(j), 1}=P_{U}^{(j-1)}\).
    \(P_{U \mid Y}^{(j), 1}=P_{U \mid Y}^{(j-1)}\).
    \(t=1\).
        while \(t=1\) or \(\left\|P_{U}^{(j), t}-P_{U}^{(j), t-1}\right\|_{\ell_{1}}>\eta_{p}\) do
            Update \(P_{U \mid y_{i}}\) by solving (6).
            Update \(P_{U}\) by solving (7).
            Update \(\Lambda\) by (8).
            \(t=t+1\).
        Update \(P_{Z \mid U}^{(j)}\) by (4).
        Update \(P_{S \mid U}^{(j)}\) by (5).
        \(j=j+1\).
return \(P_{U \mid Y}\)
```


Outline

(2) The Proposed Method

(3) Numerical Examples

4 Conclusion

Numerical Examples

- Suppose that $Z \in\{0,1\}$.
- Set the prior distributions $\boldsymbol{p}_{z}=\left\{\frac{1}{4}, \frac{3}{4}\right\}$.
- Let $|\mathcal{Y}|=9,|\mathcal{U}|=11$.
- The conditional distributions $P_{Y \mid S}(y \mid s, Z=0)$ and $P_{Y \mid S}(y \mid s, Z=1)$ are shown below

Figure: Conditional distributions

Numerical Examples: relationship between α and degree of fairness

- Set the privacy trade-off parameter $\beta=7$.
- Randomly initialize $P_{U \mid Y}$.
- Run the algorithm until it terminates for different α.
- Repeat 300 times for each α.

- As α increases, the transformed variable provides less information about the sensitive attribute.

Numerical Examples: relationship between α and information accuracy

- The information accuracy $I(S ; U)$ is decreasing as α increases.
- The deduction of $I(S ; U)$ is not very large.

Numerical Examples: convergence speed of the proposed algorithm

- The objective function value monotonically increases and converges as the iterative process progresses.
- Algorithm 1 converges within 30 iterations.
- GA is hard to converge. The optimal function value found by GA is always smaller.

(a) Function value of Algorithm 1

(b) Function value of GA

Figure: Function value v.s. iteration

Outline

(2) The Proposed Method
(3) Numerical Examples
(4) Conclusion

Conclusion

- We have explored the utility, fairness and privacy trade-off in IAS scenarios under sensitive environments.
- We have formulated an optimization problem to find the desirable transformation map.
- We have designed an iterative method to solve this complicated optimization problem.
- The method has better performance than GA.
- Numerical results are provided.

