
END-TO-END KEYWORD SPOTTING USING NEURAL ARCHITECTURE SEARCH AND
QUANTIZATION

David Peter Wolfgang Roth Franz Pernkopf

Graz University of Technology
Signal Processing and Speech Communication Laboratory

Graz, Austria

ABSTRACT

This paper introduces neural architecture search (NAS) for the au-
tomatic discovery of end-to-end keyword spotting (KWS) models
for limited resource environments. We employ a differentiable NAS
approach to optimize the structure of convolutional neural networks
(CNNs) operating on raw audio waveforms. After a suitable KWS
model is found with NAS, we conduct quantization of weights and
activations to reduce the memory footprint. We conduct extensive
experiments on the Google speech commands dataset. In particular,
we compare our end-to-end models to mel-frequency cepstral coeffi-
cient (MFCC) based CNNs. For quantization, we compare fixed bit-
width quantization and trained bit-width quantization. Using NAS
only, we were able to obtain a highly efficient model with an accu-
racy of 95.55% using 75.7k parameters and 13.6M operations. Using
trained bit-width quantization, the same model achieves a test accu-
racy of 93.76% while using on average only 2.91 bits per activation
and 2.51 bits per weight.

Index Terms— keyword spotting, neural architecture search,
quantization

1. INTRODUCTION

Automatic speech recognition (ASR) is becoming increasingly im-
portant for user interaction with everyday consumer devices. ASR
systems are typically complex and computation-intensive, i.e. run-
ning ASR in always-on mode results in a steady high energy con-
sumption. This is especially problematic for mobile devices whose
batteries are drained quickly when running ASR permanently.

A common solution is to run a low-cost keyword spotting
(KWS) system that is listening permanently only for a limited set
of prespecified keywords. Upon detection of such a keyword, a full
ASR system is triggered which then listens for a rich set of user
commands. The requirements of a KWS system are: (i) The system
should be resource-efficient to mitigate the aforementioned energy
problem, (ii) it should run in real-time and, (iii) it should be accurate
to maintain a high user-experience.

In KWS, deep neural networks (DNNs) have become the state-
of-the-art. In [1], several models from the literature [2, 3, 4, 5]
are evaluated on the Google speech commands dataset [6], a pop-
ular data set consisting of pre-segmented fixed-length recordings of
isolated words. In [1], models are compared in terms of accuracy,
memory requirements and number of operations (i.e. the number of
multiplications and additions) per forward pass. To allow for easy
deployment on microcontrollers they train their models using 32 bit
float numbers and quantize the weights after training to 8 bit fixed-
point numbers. In [7], DNNs are compressed using model compres-

sion techniques to enable neural speech enhancement on microcon-
trollers.

There are many aspects to consider when designing resource-
efficient DNNs for KWS. In this paper, we will focus specifically on
the following important aspects: (i) The DNN architecture, (ii) com-
parison between spectral MFCC features and raw audio processing
as well as (iii) quantization of weights and activations. We introduce
relevant works of these areas in the following paragraphs.

Recently, neural architecture search (NAS) became a popular
technique to automate the design of DNN architectures. A NAS al-
gorithm searches for the best performing DNN architecture within a
given search space using appropriate search heuristics. Popular NAS
approaches use concepts such as reinforcement learning [8], gradi-
ent based methods [9] or evolutionary methods [10] for exploring the
search space. In the context of resource-efficient DNNs, NAS tech-
niques have also been used to find DNN architectures that are specif-
ically tailored to the underlying hardware [11, 12, 13, 14] by, for
instance, additionally minimizing memory requirements, number of
operations, or latency of the resulting model. Therefore, NAS tech-
niques are well-suited for finding DNNs that run on mobile phones,
embedded devices and microcontrollers. In the context of KWS,
NAS has been used successfully in [15, 16] to find efficient and small
DNN architectures.

KWS with DNNs is typically performed on hand-crafted speech
features such as MFCCs that are extracted from raw audio wave-
forms. Extracting MFCCs involves computing the Fourier trans-
form. However, performing the Fourier transform is computationally
expensive and might exceed the capabilities of resource-constrained
devices. Therefore, Ibrahim et al. [17] proposed to use simpler
speech features derived in the time-domain. The features, referred to
as Multi-Frame Shifted Time Similarity (MFSTS), are obtained by
computing constrained lag autocorrelations on overlapping speech
frames to form a 2D map. A temporal convolutional neural network
(TCN) [18] is then used to classify keywords on MFSTSs.

However, hand-crafted features such as MFSTSs and MFCCs
may not be optimal for KWS. Therefore recent works have proposed
to directly feed the DNNs with raw audio waveforms. In [19], a
CNN for speaker recognition is proposed that encourages to learn
parameterized sinc functions as kernels in the first layer. This layer
is referred to as SincConv layer. During training, a low and high
cutoff frequency per kernel is determined. Therefore, a custom filter
bank is derived by training the SincConv layer that is specifically tai-
lored to the desired application. SincConvs have also been recently
applied to KWS [20].

Quantization-aware training uses the straight-through estimator
(STE) [21, 22] to approximate the gradient of piecewise constant
quantizers by the non-zero gradient of some other function. The

STE has been used for example in the training of binarized neural
networks (BNNs) [23] where the resolution of both weights and ac-
tivations is reduced to binary values {−1, 1}. Another method for
quantizing DNNs involves a Bayesian approach to learn weight dis-
tributions over discrete weights [24]. Recently, the STE has been
used to also learn the weight and activation bit-widths (i.e. number
of bits) during training [25]. We will refer to this type of training as
trained bit-width quantization.

In this paper, we propose NAS for the automatic discovery of
small and resource-efficient end-to-end models for KWS. We uti-
lize the techniques from ProxylessNAS [11] to find suitable models.
During NAS, we establish a tradeoff between the model accuracy
and the number of operations. We compare our end-to-end KWS
models obtained by NAS to MFCC based CNNs. Once the efficient
full-precision end-to-end KWS model has been found, we compare
two weight and activation quantization methods. Both methods per-
form quantization-aware training from scratch on the full-precision
end-to-end KWS model. In the first method, the weight and acti-
vation bit-widths are fixed during training. In the second method,
trained bit-width quantization is performed.

Our work specifically focuses on the classification of pre-
segmented fixed-length recordings of isolated words using the
Google speech commands dataset. Our contributions are the fol-
lowing:

• We apply NAS to obtain efficient end-to-end KWS models
operating on raw audio waveforms instead of hand crafted
features. Recent works such as [16, 26, 15] rely on hand
crafted features such as MFCCs when performing NAS for
KWS.

• We perform a thorough comparison between KWS on raw
audio waveforms and KWS on MFCCs in terms of accuracy,
number of operations and number of model parameters.

• We compare two quantization methods for weight and acti-
vation quantization. In particular, we perform fixed bit-width
and trained bit-width quantization on end-to-end KWS mod-
els to further reduce the memory footprint.

The outline of the paper is as follows: In Section 2 we present
our NAS configuration, the feature extraction using SincConvs and
the weight quantization methods utilized in this paper. The exper-
imental setup is shown in Section 3. In Section 4, we discuss the
results of our experiments. Finally, Section 5 provides the conclu-
sion.

2. METHODS

2.1. Neural Architecture Search

We aim to find well performing architectures for different computing
regimes. To achieve this, we use multi-objective ProxylessNAS [11]
to discover DNNs optimized for accuracy and number of operations.
Note that this implicitly optimizes for the model size as well.

ProxylessNAS constructs an overparameterized model with
multiple parallel candidate operations per layer as the base model.
The overparameterized model is trained together with a set of ar-
chitecture parameters specifying probabilities over the candidate
operations. Once training has finished, for each layer the most
probable candidate operation is selected.

Table 1 shows the overparameterized model used in this paper. It
consists of five stages with two input stages (i) (ii), two intermediate
stages (iii) (iv) and one output stage (v). Stages (i), (ii) and (v) are
fixed whereas stages (iii) and (iv) are optimized using NAS. We use

Table 1. NAS model used for KWS. K denotes the kernel size, S
the stride, C the number of channels and L the number of layers
per stage. Stages (i) and (ii) and (v) are fixed. For stage (iii) and
(iv), the parameters e (expansion rate), k (kernel size) and whether
an identity layer is selected or not is optimized using NAS.

Stage Type K S C L

(i) SincConv 400 160 1 1
(ii) Conv 3x3 2, 2 10 1
(iii) MBC[e] / Identity [k]×[k] 2, 2 20 3
(iv) MBC[e] / Identity [k]×[k] 2, 2 40 3
(v) Conv 1×1 1, 1 80 1

Global Avg. Pooling - - - 1
Fully connected - - - 1

mobile inverted bottleneck convolutions (MBCs) [27] as our main
building blocks in stages (iii) and (iv).

MBCs have two learnable parameters, the expansion rate e and
the size k of the quadratic k×k convolution kernel. MBCs consist
of three separate convolutions, one 1×1 convolution followed by
a depthwise-separable 3×3 convolution followed again by a 1×1
convolution. The first two convolutions apply batch normalization
and ReLU activation functions. The third convolution only applies
batch normalization. The first and third 1×1 convolution change the
number of feature maps by the expansion rate factor of e and 1/e
respectively. Stride (as stated in Table 1) is only applied to the first
convolution of each stage.

During NAS, we allow MBCs with expansion rates e ∈
{1, 2, 3, 4, 5, 6} and kernel sizes k ∈ {3, 5, 7} for selection. We
also include the zero operation which effectively results in an iden-
tity layer [13]. For blocks where the input feature map size is equal
to the output feature map size we include skip connections.

2.2. Feature Extraction using SincConvs

SincNet [19] uses parameterized sinc functions as filters in the first
layer. This layer performs a convolution of the raw audio input
x with an arbitrary number of parameterized sinc functions called
SincNet filters. For a single SincNet filter, the output y given the
filter g[n, θ] parameterized by θ is simply

y[n] = x[n] ∗ g[n, θ]. (1)

In SincNet, the choice for the filter function g is

g[n, f1, f2] = 2f2 sinc(2πf2n)− 2f1 sinc(2πf1n), (2)

where the sinc function is defined as sinc(x) = sin(x)/x and θ =
(f1, f2). This choice of g can be seen as a bandpass filter in the
frequency domain with f1 and f2 being the low and high cut-off
frequencies of the bandpass filter. The magnitude of the bandpass
filter in the frequency domain is therefore

G[f, f1, f2] = rect

(
f

2f2

)
− rect

(
f

2f1

)
(3)

where rect(f) is the rectangular function defined as

rect(f) =

{
1 if |f | ≤ 1

2

0 if |f | > 1
2

. (4)

SincConv filters have a much smaller memory footprint than 1D-
Convs where the filter kernel is fully learnable. To derive a single
filter g[n, f1, f2], only two parameters, the lower cutoff frequency
f1 and the upper cutoff frequency f2 are needed, whereas for con-
volutions with arbitrary filters, the number of parameters to store is
equal to the length of the filter.

During runtime however, SincConvs and 1D-Convs of similar
length need the same amount of memory to store the filter kernels.
SincConv filter kernels are precomputed once before runtime. How-
ever, the computational cost of computing the SincConv filter kernels
can typically be neglected.

2.3. Weight and Activation Quantization

For the architecture discovered by NAS, we compare two quanti-
zation methods for quantization of weights and activations, namely
fixed bit-width quantization and trained bit-width quantization.

We perform quantization-aware training using the quantization
framework Brevitas [28]. We quantize weights and activations of all
layers, except for the input layer.

In quantization-aware training, quantized tensors are obtained
from real-valued auxiliary tensors by applying a quantization func-
tion Q. During backpropagation, the gradients of the auxiliary ten-
sors are obtained using the STE to estimate the gradient of Q. The
quantized tensors are typically integer numbers encoded to k bits. A
factor α, called the dynamic range [29, 30, 31], is used to map the
integer numbers of the quantized tensor to real-valued numbers. The
scaling factor typically increases the performance quite substantially.

For quantized weights, we select α to be the maximal absolute
value of the auxiliary weight tensor. For quantized activations, we
select α differently depending on the bit width. Binary (i.e. 1 bit)
quantization of activations is performed using a constant scaling fac-
tor of α = 1. When the activation bit-width is larger or equal to 2
bits, the scaling factor α is declared as a trainable parameter that is
optimized using a gradient based approach.

For trained bit-width quantization we optimized the following
loss function

L = LCE + λw ·Bw + λa ·Ba (5)

where LCE is the cross-entropy loss, λw, λa are hyperparameters
and Bw, Ba are the average weight and activation bit-width of the
model respectively. For our experiments, the hyperparameters were
selected based on a grid search with values 0, 0.02, 0.04, 0.06, 0.08
for both λw and λa. We selected λw = 0.04 and λa = 0.04 to ob-
tain a good tradeoff between the model size and accuracy. Note that
in Brevitas, trained bit-width quantization is limited to bit-widths
larger or equal to 2. However, Brevitas is currently under active
development and future versions may allow 1 bit activations and
weights for trained bit-width quantization.

3. EXPERIMENTAL SETUP

3.1. Dataset

We use the first version of the Google speech commands dataset [6].
It consists of 65,000 1-second long audio files sampled with 16 bit at
16 kHz sampling frequency. Every audio file contains one utterance
of an English word spoken by one person. The words are grouped
into 30 different classes. We follow the procedure of [32] and use the
following 10 classes ”Yes”, ”No”, ”Up”, ”Down”, ”Left”, ”Right”,
”On”, ”Off”, ”Stop” and ”Go” from the dataset. Likewise, we also
include an ”unknown” class which is a blend of randomly selected

samples from the remaining 20 classes. Furthermore, a ”silence”
class is added. The ”silence” class is artificially generated and con-
sists of 1-second audio files containing a random slice of audio from
a randomly selected noise sample provided by the Google Speech
commands dataset. We follow the procedure of [32] and perform
data augmentation by applying a random time shift and adding back-
ground noise to the raw audio waveforms.

3.2. Feature Extraction

End-to-end KWS models presented in this paper do not need any
hand-crafted feature extraction since they directly classify keywords
from the raw audio waveforms. However, we will later compare
end-to-end KWS models with models that use MFCCs as input. For
models using MFCCs as input, the raw audio waveforms are first
filtered with a low pass filter flow = 4kHz and a highpass filter
fhigh = 40Hz. We then extract between 10 and 30 MFCCs per
40ms frame with a stride length of 20ms. The number of MFCCs is
varied in the experiments. We use a large frame size of 40ms and
large stride of 20ms to keep the number of frames in the time dimen-
sion small. This in turn reduces the spatial size of the feature maps
that are supplied to our models and therefore reduces the number of
operations needed to compute a prediction. Before performing clas-
sification on raw audio waveforms, we select a window length of
25ms and a hop length of 10ms to split up the raw audio waveform
into frames.

4. EXPERIMENTS

4.1. KWS from Raw Audio Waveforms using NAS

We compare our end-to-end KWS models to models using MFCCs
[15]. MFCC models consist of three stages (c.f. Table 1 in [15])
where stage (i) is a 5 × 11 convolution and stage (iii) is a 1 × 1
convolution followed by global average pooling and a single fully
connected layer. Stage (ii) consists of 12 MBC layers that are op-
timized using ProxylessNAS. A tradeoff between the model size
and accuracy is established by varying the regularization parame-
ter β ∈ {0, 1, 2, 4, 8, 16} to obtain MFCC models of different sizes
(for details on β see [15])

For end-to-end KWS models, we introduce a width multiplier
m that scales the number of channels of the model by a factor of
m = 1,m = 0.5 or m = 2. The width multiplier does not effect
the SincConv layer at the input. For the SincConv layer, the number
of filters was set to 40, 60, and 80. After a width-multiplier and the
number of SincConv filters is selected, NAS is performed to select
the layers in stage (iii) and (iv) of our NAS model (c.f. Table 1).
Again, a tradeoff between the model size and accuracy is established
by varying the regularization parameter β ∈ {0, 1, 2, 4, 8, 16} to
obtain end-to-end KWS models of different sizes. To assess the dif-
ference between SincConvs and 1D-Convs, we also performed NAS
using models with 1D-Conv instead of SincConv. However, here we
only select a width-multiplier of m = 1.

Figure 1 shows the performance of SincConv and MFCC mod-
els. For better visibility, we only include models on the Pareto fron-
tier. We also include 1D-Conv models although none of the models
contributes to the Pareto frontier. The number of operations of a
model corresponds to the circle area. The number of parameters of
SincConv models is the number of parameters needed to store the
models before performing classification. During classification, the
cutoff frequencies of the filters are used to compute the kernels of
the SincConvs, which in turn slightly increases the number of pa-

Fig. 1. Test accuracy versus number of parameters of KWS mod-
els obtained using NAS. The number of operations corresponds to
the circle area. The model marked with an arrow is quantized in
Section 4.2.

rameters. We can observe that 1D-Conv models perform worse than
SincConv models with regard to test accuracy, number of operations
and number of parameters. This indicates that using parameterized
sinc functions instead of fully learnable filter kernels provide a sub-
stantial benefit in the performance of end-to-end KWS models. We
can also observe that SincConv models need less parameters than
MFCC models to achieve the same test accuracy. However, the num-
ber of operations is slightly larger in SincConv models.

Using NAS only, we were able to obtain efficient models. We
highlighted one model from Figure 1 (marked with a blue arrow) that
will be quantized in Section 4.2. This model achieves an accuracy of
95.55% using only 75.7k parameters and 13.6M operations.

4.2. Weight and Activation Quantization

After NAS is performed and a suitable full-precision end-to-end
KWS model is found, we quantize the weights and activations to
further reduce the memory footprint of the model. We select the
model marked with a blue arrow from Figure 1. We first perform
fixed bit-width quantization for the weights and activations. The
results are visualized in Figure 2.

We observe that the most notable impact on performance is en-
countered when the activation bit-width is reduced to 2 or even 1 bit.
When the activation bit-width is 4 bits, a slight performance impact
is observed. However, when using 8 bit activations, the performance
is similar to the full precision model irrespective of the weight bit-
width.

We also perform trained bit-width quantization on the same
model. However, now the weight and activation bit-width are opti-
mized together with model parameters using backpropagation. The
weight and activation bit-widths per layer after training are visual-
ized in Figure 3. For MBC blocks, we report the average per-weight
and per-activation bit width over the three convolutions.

The trained bit-width model visualized in Figure 3 needs on av-
erage 2.91 bits for quantized activations and 2.51 bits for quantized
weights and achieves a test accuracy of 93.76%. Compared to a
fixed bit-width model with 2 bit activations and 2 bit weights with a
test accuracy of 90.35%, the trained bit-width model outperforms the
fixed bit-width model by 3.41% while using only slightly more bits

Fig. 2. Test accuracy versus weight bit-width versus activation bit-
width of an end-to-end KWS model using SincConvs. The model
was trained from scratch using quantization-aware training and fixed
bit-widths.

Fig. 3. Weight and activation bit-widths of an end-to-end KWS
model using SincConvs. The model was trained from scratch using
quantization-aware training and trained bit-widths.

on average. However, hardware implementation of trained bit-width
quantization is more difficult.

We also observe that layers at the input and the output need more
bits than intermediate layers. This result is in line with the vast lit-
erature where it is common practice to leave the input and output
layers at full precision.

5. CONCLUSIONS

Resource-efficient DNNs are the key components in modern key-
word spotting (KWS) systems. We used neural architecture search
(NAS) to obtain efficient end-to-end convolutional neural networks
(CNNs) for KWS. Our end-to-end KWS models utilize a SincConv
at the input layer to perform classification on raw audio waveforms.
To make our results comparable, we performed NAS on the Google
speech commands dataset. We compared our end-to-end KWS mod-
els to mel-frequency cepstral coefficient (MFCC) based CNNs. We
also compared two weight and activation quantization methods that
help to further reduce the memory footprint. By establishing a trade-
off between the model accuracy and the model size, we show that
trained bit-width quantization can be used to obtain more competi-
tive models than simply using fixed bit-width quantization.

6. REFERENCES

[1] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello Edge: Keyword
Spotting on Microcontrollers,” CoRR, vol. abs/1711.07128, 2017.

[2] G. Chen, C. Parada, and G. Heigold, “Small-footprint Keyword Spot-
ting using Deep Neural Networks,” in International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 4087–
4091.

[3] T. N. Sainath and C. Parada, “Convolutional Neural Networks for
Small-footprint Keyword Spotting,” in Annual Conference of the Inter-
national Speech Communication Association (ISCA), 2015, pp. 1478–
1482.

[4] S. Ö. Arik, M. Kliegl, R. Child, J. Hestness, A. Gibiansky, C. Fougner,
R. Prenger, and A. Coates, “Convolutional Recurrent Neural Networks
for Small-Footprint Keyword Spotting,” in Annual Conference of the
International Speech Communication Association (ISCA), 2017, pp.
1606–1610.

[5] M. Sun, A. Raju, G. Tucker, S. Panchapagesan, G. Fu, A. Mandal,
S. Matsoukas, N. Strom, and S. Vitaladevuni, “Max-pooling Loss
Training of Long Short-term Memory Networks for Small-footprint
Keyword Spotting,” in Spoken Language Technology Workshop (SLT),
2016, pp. 474–480.

[6] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” CoRR, vol. abs/1804.03209, 2018.

[7] I. Fedorov, M. Stamenovic, C. Jensen, L. Yang, A. Mandell, Y. Gan,
M. Mattina, and P. N. Whatmough, “TinyLSTMs: Efficient Neural
Speech Enhancement for Hearing Aids,” in Interspeech (IS), 2020, pp.
4054–4058.

[8] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
Neural Architecture Search via Parameter Sharing,” in International
Conference on Machine Learning (ICML), 2018, pp. 4092–4101.

[9] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable Architec-
ture Search,” in International Conference on Learning Representations
(ICLR), 2019.

[10] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical Representations for Efficient Architecture Search,” in
International Conference on Learning Representations (ICLR), 2018.

[11] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct Neural Architecture
Search on Target Task and Hardware,” in International Conference on
Learning Representations (ICLR), 2019.

[12] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, “MnasNet: Platform-Aware Neural Architecture Search for
Mobile,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 2820–2828.

[13] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough, “SpArSe:
Sparse Architecture Search for CNNs on Resource-Constrained Micro-
controllers,” in Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[14] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, and P. Whatmough, “MicroNets: Neural
Network Architectures for Deploying TinyML Applications on Com-
modity Microcontrollers,” in Proceedings of Machine Learning and
Systems (MLSys), 2021, pp. 517–532.

[15] D. Peter, W. Roth, and F. Pernkopf, “Resource-efficient DNNs for Key-
word Spotting using Neural Architecture Search and Quantization,” In-
ternational Conference on Pattern Recognition (ICPR), 2020.

[16] T. Mo, Y. Yu, M. Salameh, D. Niu, and S. Jui, “Neural Architecture
Search for Keyword Spotting,” in Interspeech (IS), 2020, pp. 1982–
1986.

[17] E. A. Ibrahim, J. Huisken, H. Fatemi, and J. P. de Gyvez, “Keyword
Spotting using Time-Domain Features in a Temporal Convolutional
Network,” in 22nd Euromicro Conference on Digital System Design
(DSD), 2019, pp. 313–319.

[18] C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen,
A. Kannan, R. J. Weiss, K. Rao, E. Gonina, N. Jaitly, B. Li,
J. Chorowski, and M. Bacchiani, “State-of-the-Art Speech Recogni-
tion with Sequence-to-Sequence Models,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2018,
pp. 4774–4778.

[19] M. Ravanelli and Y. Bengio, “Speaker Recognition from Raw Wave-
form with SincNet,” in IEEE Spoken Language Technology Workshop
(SLT), 2018, pp. 1021–1028.

[20] S. Mittermaier, L. Kürzinger, B. Waschneck, and G. Rigoll,
“Small-Footprint Keyword Spotting on Raw Audio Data with Sinc-
Convolutions,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020, pp. 7454–7458.

[21] G. Hinton, “Neural Networks for Machine Learning,” Coursera, video
lectures, 2012.

[22] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or Propagat-
ing Gradients Through Stochastic Neurons for Conditional Computa-
tion,” CoRR, vol. abs/1308.3432, 2013.

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks,” in Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2016, pp. 4107–4115.

[24] W. Roth, G. Schindler, H. Fröning, and F. Pernkopf, “Training Discrete-
Valued Neural Networks with Sign Activations Using Weight Distribu-
tions,” in European Conference on Machine Learning (ECML), 2019,
pp. 382–398.

[25] S. Uhlich, L. Mauch, F. Cardinaux, K. Yoshiyama, J. A. Garcı́a,
S. Tiedemann, T. Kemp, and A. Nakamura, “Mixed Precision DNNs:
All you need is a good parametrization,” in International Conference
on Learning Representations (ICLR), 2020.

[26] B. Zhang, W. Li, Q. Li, W. Zhuang, X. Chu, and Y. Wang, “Autokws:
Keyword spotting with differentiable architecture search,” CoRR, vol.
abs/2009.03658, 2020.

[27] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,” in Conference
on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4510–
4520.

[28] A. Pappalardo, “Xilinx/brevitas,” URL:
https://github.com/Xilinx/brevitas.

[29] S. Uhlich, L. Mauch, K. Yoshiyama, F. Cardinaux, J. A. Garcı́a,
S. Tiedemann, T. Kemp, and A. Nakamura, “Differentiable Quanti-
zation of Deep Neural Networks,” CoRR, vol. abs/1905.11452, 2019.

[30] S. R. Jain, A. Gural, M. Wu, and C. Dick, “Trained Quantization
Thresholds for Accurate and Efficient Fixed-Point Inference of Deep
Neural Networks,” in Proceedings of Machine Learning and Systems
(MLSys), 2020.

[31] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S.
Modha, “Learned Step Size quantization,” in International Conference
on Learning Representations (ICLR), 2020.

[32] R. Tang and J. Lin, “Honk: A PyTorch Reimplementation of Con-
volutional Neural Networks for Keyword Spotting,” CoRR, vol.
abs/1710.06554, 2017.

