

A Multi-resolution Low-rank Tensor Decomposition

Sergio Rozada King Juan Carlos University - Madrid, Spain

Joint work with: A. G. Marques

2022 IEEE International Conference on Acoustics, Speech and Signal Processing - Singapore - May 22 - 27, 2022

Modelling higher-order structures

The world is becoming increasingly connected

- Every device is a factory of information
 - \Rightarrow Smartphones, sensors, etc.
 - \Rightarrow Enormous datasets Big Data

Modelling higher-order structures

- The world is becoming increasingly connected
- Every device is a factory of information
 - \Rightarrow Smartphones, sensors, etc.
 - \Rightarrow Enormous datasets Big Data

- Parsimony is key to enhance efficiency in multi-dimensional domains (N^D_s)
 - \Rightarrow E.g. chemometrics, and psychometrics [Bro97]
- Matrix models have been traditionally used to model these datasets
- Tensor models are breaking through [Papalexakis16]

Tensor Decomposition

Tensor decomposition tries to estimate a set of latent factors that summarize the tensor [Kolda2009]

Tensor Decomposition

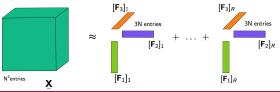
- Tensor decomposition tries to estimate a set of latent factors that summarize the tensor [Kolda2009]
- The PARAFAC decomposition generalizes the SVD $\mathbf{X} = \sum_{r=1}^{R} \sigma_r \mathbf{u}_r \mathbf{v}_r^T$

 \Rightarrow Consider the Ith order tensor \underline{X}

- \Rightarrow Consider the matrices $\mathbf{F}_i \in \mathbb{R}^{N_i imes R}$ for i = 1, ..., I
- \Rightarrow Then, **X** is said to have rank *R* if it can be written as

$$\underline{\mathbf{X}} = \sum_{r=1}^{R} [\mathbf{F}_1]_r \odot [\mathbf{F}_2]_r \odot \dots \odot [\mathbf{F}_I]_r$$
(1)

 \Rightarrow The matrices **F**_i are obtained via ALS schemes



Tensors can be unfolded into lower order structures

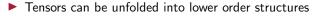
Vectorization and matrization I

- Tensors can be unfolded into lower order structures
- Unfoldings are key to handle tensors
 - \Rightarrow There are different types of unfoldings

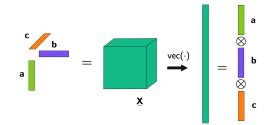
Vectorization and matrization I

- Tensors can be unfolded into lower order structures
- Unfoldings are key to handle tensors
 - \Rightarrow There are different types of unfoldings
- Tensors can be unfolded into vectors (vectorization)

Vectorization and matrization I

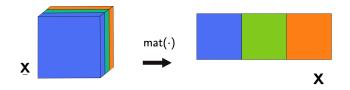


- Unfoldings are key to handle tensors
 - \Rightarrow There are different types of unfoldings
- Tensors can be unfolded into vectors (vectorization)
- Parsimony can be leveraged via tensor decomposition
 The Kronecker product factorizes a vectorization



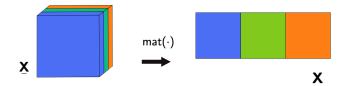
Universidad Rey Juan Carlos

▶ Tensor to matrix unfolding (matrization) key in tensor decomposition



Universidad Rey Juan Carlos

Tensor to matrix unfolding (matrization) key in tensor decomposition

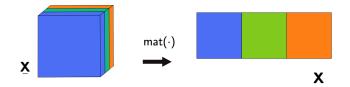


Dimensions are rearranged in matrization

- \Rightarrow One dimension remains fixed
- \Rightarrow The other are grouped into one dimension

Universidad Rey Juan Carlos

Tensor to matrix unfolding (matrization) key in tensor decomposition



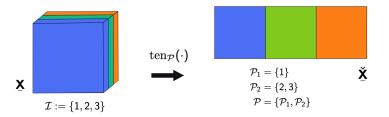
- Dimensions are rearranged in matrization
 - \Rightarrow One dimension remains fixed
 - \Rightarrow The other are grouped into one dimension
- Parsimony can be leveraged via low rank
 - \Rightarrow Low-rank tensor with rank R implies matrix with rank R
 - \Rightarrow The opposite is not necessarily true but...
 - \Rightarrow provides alternative parsimonious description (dimension dependent)

Matrization and vectorization can be generalized

- Matrization and vectorization can be generalized
- Tensors can be unfolded into arbitrary low-order tensors
 - \Rightarrow Matrization is an special case, the lower-order tensor is a matrix
 - \Rightarrow Vectorization is another, the lower-order tensor is a vector

Tensorization and partitions

- Matrization and vectorization can be generalized
- Tensors can be unfolded into arbitrary low-order tensors
 Matrization is an special case, the lower-order tensor is a matrix
 Vectorization is another, the lower-order tensor is a vector
 Partitions define how to unfold a tensor to a lower-order tensor:
 - \Rightarrow Partitions tells how to group dimensions



Formalizing partitions

Consider a tensor X of order *I*:

 \Rightarrow Let $\mathcal{I}:=\{1,2,...,l\}$ denote the set containing all indexes

Definition: Partition

The ordered set $\mathcal{P} = \{\mathcal{P}_1, ..., \mathcal{P}_P\}$ is a partition of the set \mathcal{I} if it holds that: $\mathcal{P}_p \neq \emptyset$ for all $p, \mathcal{P}_p \cap \mathcal{P}_{p'} = \emptyset$ for all $p' \neq p$, and $\bigcup_{p=1}^{P} \mathcal{P}_p = \mathcal{I}$.

Formalizing partitions

Consider a tensor X of order *I*:

 \Rightarrow Let $\mathcal{I}:=\{1,2,...,I\}$ denote the set containing all indexes

Definition: Partition

The ordered set $\mathcal{P} = \{\mathcal{P}_1, ..., \mathcal{P}_P\}$ is a partition of the set \mathcal{I} if it holds that: $\mathcal{P}_p \neq \emptyset$ for all $p, \mathcal{P}_p \cap \mathcal{P}_{p'} = \emptyset$ for all $p' \neq p$, and $\bigcup_{p=1}^{P} \mathcal{P}_p = \mathcal{I}$.

Partitions are a mechanism to unfold tensors

 \Rightarrow They can be used to decompose a tensor \mathbf{X} as the sum:

$$\mathbf{X}_{\underline{I}} = \sum_{l=1}^{L} \mathbf{Z}_{l}$$
(2)

 \Rightarrow Where each \mathbf{Z}_l is a low-order unfolding defined by partition $\mathcal{P}^{(l)}$

Contribution I

► A tensor can be unfolded into various lower-order tensors

- \Rightarrow Low rank can be imposed in each low-order tensor
- \Rightarrow These unfoldings can be mixed

Contribution I

► A tensor can be unfolded into various lower-order tensors

- \Rightarrow Low rank can be imposed in each low-order tensor
- \Rightarrow These unfoldings can be mixed
- ► We propose a Multi-Resolution Low Rank (MRLR) decomposition:

Definition: MRLR decomposition

- 1. Consider a *collection* of tensor lower-order representations
- 2. Postulate a low-rank decomposition for each representation
- 3. Map each representation back to the original tensor domain
- 4. Model the tensor as the sum of the low-rank representations

Contribution I

► A tensor can be unfolded into various lower-order tensors

- \Rightarrow Low rank can be imposed in each low-order tensor
- \Rightarrow These unfoldings can be mixed
- ► We propose a Multi-Resolution Low Rank (MRLR) decomposition:

Definition: MRLR decomposition

- 1. Consider a *collection* of tensor lower-order representations
- 2. Postulate a low-rank decomposition for each representation
- 3. Map each representation back to the original tensor domain
- 4. Model the tensor as the sum of the low-rank representations
- ► The MRLR decomposition
 - \Rightarrow exploits information at different resolutions
 - \Rightarrow leverages parsimony

Contribution II

- Formally, consider a collection of partitions $\mathcal{P}^{(1)}, ..., \mathcal{P}^{(L)}$ \Rightarrow with $|\mathcal{P}^{(l)}| \leq |\mathcal{P}^{(l')}|$ for l < l'
 - \Rightarrow Given the /th order tensor $\underline{\textbf{X}},$ we propose

$$\mathbf{X} = \sum_{l=1}^{L} \mathbf{Z}_{l}, \text{ with } \operatorname{rank}\left(\operatorname{ten}_{\mathcal{P}^{(l)}}(\mathbf{Z}_{l})\right) \leq \mathbf{R}_{l},$$
(3)

Contribution II

- Formally, consider a collection of partitions $\mathcal{P}^{(1)}, ..., \mathcal{P}^{(L)}$ \Rightarrow with $|\mathcal{P}^{(l)}| \leq |\mathcal{P}^{(l')}|$ for l < l'
 - \Rightarrow Given the /th order tensor $\underline{\textbf{X}},$ we propose

$$\underline{\mathbf{X}} = \sum_{l=1}^{L} \underline{\mathbf{Z}}_{l}, \text{ with } \operatorname{rank}\left(\operatorname{ten}_{\mathcal{P}^{(l)}}(\underline{\mathbf{Z}}_{l})\right) \leq \underline{\mathbf{R}}_{l}, \tag{3}$$

▶ The tensorization operator $ten_{\mathcal{P}}(\mathbf{Z})$ yields the $|\mathcal{P}|$ th order tensor $\mathbf{\check{Z}}$

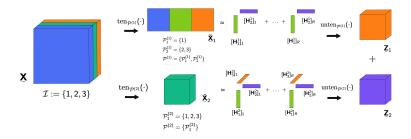
$$\begin{split} \check{\mathbf{Z}} &= \operatorname{ten}_{\mathcal{P}}(\mathbf{Z}) \in \mathbb{R}^{\prod_{j=1}^{|\mathcal{P}_{1}|} |\mathcal{P}_{1}(j)| \times \ldots \times \prod_{j=1}^{|\mathcal{P}_{p}|} |\mathcal{P}_{P}(j)|} \\ &[\check{\mathbf{Z}}]_{k_{1},\ldots,k_{|\mathcal{P}|}} = [\mathbf{Z}]_{n_{1},\ldots,n_{l}} \text{ and} \\ &k_{\rho} = n_{\mathcal{P}_{\rho}(1)} \text{ if } |\mathcal{P}_{\rho}| = 1 \\ &k_{\rho} = n_{\mathcal{P}_{\rho}(1)} + \sum_{i=2}^{|\mathcal{P}_{\rho}|} (n_{\mathcal{P}_{\rho}(i)} - 1) \prod_{j=1}^{i-1} N_{\mathcal{P}_{\rho}(j)} \text{ if } |\mathcal{P}_{\rho}| > 1 \end{split}$$

MRLR decomposition

Given a three-dimensional tensor X:

- \Rightarrow The partition $\mathcal{P}^{(1)}=\{\{1\},\{2,3\}\}$ defines the matrix $\check{{\bm{X}}}_1$
- \Rightarrow The partition $\mathcal{P}^{(2)}=\{\{1,2,3\}\}$ defines the auto-map $\check{{\bm{X}}}_2$
- \Rightarrow The low-rank decompositions $\check{{\bm Z}}_1$ and $\check{{\bm Z}}_2$ are estimated
- $\Rightarrow \check{\underline{Z}}_1$ and $\check{\underline{Z}}_2$ are mapped back, giving \underline{Z}_1 and \underline{Z}_2

 \Rightarrow Model the tensor as the sum of $\underline{\textbf{Z}}_1$ and $\underline{\textbf{Z}}_2$



The MRLR decomposition can be obtained via solving:

$$\min_{\mathbf{Z}_{1}...\mathbf{Z}_{L}} \left\| \mathbf{X} - \sum_{l=1}^{L} \mathbf{Z}_{l} \right\|_{F}$$
s. t. rank $(\operatorname{ten}_{\mathcal{P}^{(l)}}(\mathbf{Z}_{l})) \leq R_{l}.$
(5)

The MRLR decomposition can be obtained via solving:

$$\min_{\underline{\mathbf{Z}}_{1}...\underline{\mathbf{Z}}_{L}} \left\| \underline{\mathbf{X}} - \sum_{l=1}^{L} \underline{\mathbf{Z}}_{l} \right\|_{F}$$
s. t. rank $(\operatorname{ten}_{\mathcal{P}^{(l)}}(\underline{\mathbf{Z}}_{l})) \leq R_{l}.$
(5)

▶ The expression in (5) can be worked out

 \Rightarrow Sequentially solving for each \mathbf{Z}_I

 \Rightarrow Leveraging low rank in each \mathbf{Z}_{l} via the PARAFAC decomposition

$$\min_{\mathbf{H}_{1}^{i},\ldots,\mathbf{H}_{J_{i}}^{j}}\left\|\mathbf{X}-\sum_{l\neq i}^{L}\mathbf{Z}_{l}-\sum_{j=1}^{R_{i}}[\mathbf{H}_{1}^{i}]_{j}\otimes...\otimes[\mathbf{H}_{J_{i}}^{j}]_{j}\right\|_{F}.$$
 (6)

Numerical studies

▶ MRLR-dec has been tested in three scenarios (left to right):

- \Rightarrow The aminoacids dataset, a three-mode tensor (5 \times 201 \times 61) \rightarrow / = 3
- \Rightarrow An RGB video signal of 173 frames (3 imes 173 imes 1080 imes 720) \rightarrow l = 4

 \Rightarrow A discretized three-dimensional function $f(x_1, x_2, x_3) = \frac{x_1^2 + x_2^2}{e^{|x_2 + x_3|}} \rightarrow l = 3$

Numerical studies

▶ MRLR-dec has been tested in three scenarios (left to right):

- \Rightarrow The aminoacids dataset, a three-mode tensor (5 \times 201 \times 61) \rightarrow / = 3
- \Rightarrow An RGB video signal of 173 frames (3 \times 173 \times 1080 \times 720) \rightarrow / = 4

 \Rightarrow A discretized three-dimensional function $f(x_1, x_2, x_3) = \frac{x_1^2 + x_2^2}{e^{|x_2 + x_3|}} \rightarrow l = 3$

Performance measured in terms of Normalized Frobenius Error

$$NFE = ||\mathbf{X} - \mathbf{\check{X}}||_{F} / ||\mathbf{\check{X}}||_{F}.$$
(7)

Numerical studies

MRLR-dec has been tested in three scenarios (left to right):

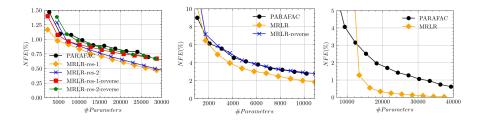
 \Rightarrow The aminoacids dataset, a three-mode tensor (5 \times 201 \times 61) \rightarrow / = 3

 \Rightarrow An RGB video signal of 173 frames (3 \times 173 \times 1080 \times 720) \rightarrow *l* = 4

 \Rightarrow A discretized three-dimensional function $f(x_1, x_2, x_3) = \frac{x_1^2 + x_2^2}{e^{|x_2 + x_3|}} \rightarrow l = 3$

Performance measured in terms of Normalized Frobenius Error

$$NFE = ||\mathbf{X} - \mathbf{\check{X}}||_{F} / ||\mathbf{\check{X}}||_{F}.$$
(7)



▶ Tensor decompositions are parsimonious high-dimensional models

- ▶ Tensor decompositions are parsimonious high-dimensional models
- ► A new (MRLR) tensor decomposition has been proposed ⇒ to leverage structure at different resolution levels

- Tensor decompositions are parsimonious high-dimensional models
- A new (MRLR) tensor decomposition has been proposed
 ⇒ to leverage structure at different resolution levels
- The MRLR decomposition can be algorithmic implemented
 ⇒ obtaining each lower-order representation sequentially
 ⇒ imposing low-rank in each lower-order representation

- Tensor decompositions are parsimonious high-dimensional models
- A new (MRLR) tensor decomposition has been proposed
 ⇒ to leverage structure at different resolution levels
- The MRLR decomposition can be algorithmic implemented
 ⇒ obtaining each lower-order representation sequentially
 ⇒ imposing low-rank in each lower-order representation
- Practical cases where MRLR outperforms PARAFAC

- Tensor decompositions are parsimonious high-dimensional models
- ► A new (MRLR) tensor decomposition has been proposed ⇒ to leverage structure at different resolution levels
- The MRLR decomposition can be algorithmic implemented
 ⇒ obtaining each lower-order representation sequentially
 ⇒ imposing low-rank in each lower-order representation
- Practical cases where MRLR outperforms PARAFAC
- Future research directions
 - \Rightarrow Identifiability/ambiguity results
 - \Rightarrow Intelligent ways of creating the partitions
 - \Rightarrow Alternative algorithms