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Modelling higher-order structures

▶ The world is becoming increasingly connected

▶ Every device is a factory of information

⇒ Smartphones, sensors, etc.

⇒ Enormous datasets - Big Data

▶ Parsimony is key to enhance efficiency in
multi-dimensional domains (ND

s )

⇒ E.g. chemometrics, and psychometrics [Bro97]

▶ Matrix models have been traditionally used to model
these datasets

▶ Tensor models are breaking through [Papalexakis16]
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Tensor Decomposition

▶ Tensor decomposition tries to estimate a set of latent factors that
summarize the tensor [Kolda2009]

▶ The PARAFAC decomposition generalizes the SVD X =
∑R

r=1 σrurvTr
⇒ Consider the I th order tensor X

⇒ Consider the matrices Fi ∈ RNi×R for i = 1, ..., I

⇒ Then, X is said to have rank R if it can be written as

X =
R∑

r=1

[F1]r ⊚ [F2]r ⊚ ...⊚ [FI ]r (1)

⇒ The matrices Fi are obtained via ALS schemes

Sergio Rozada A Multi-resolution Low-rank Tensor Decomposition 3 / 13



Tensor Decomposition

▶ Tensor decomposition tries to estimate a set of latent factors that
summarize the tensor [Kolda2009]

▶ The PARAFAC decomposition generalizes the SVD X =
∑R

r=1 σrurvTr
⇒ Consider the I th order tensor X

⇒ Consider the matrices Fi ∈ RNi×R for i = 1, ..., I

⇒ Then, X is said to have rank R if it can be written as

X =
R∑

r=1

[F1]r ⊚ [F2]r ⊚ ...⊚ [FI ]r (1)

⇒ The matrices Fi are obtained via ALS schemes

Sergio Rozada A Multi-resolution Low-rank Tensor Decomposition 3 / 13



Vectorization and matrization I

▶ Tensors can be unfolded into lower order structures

▶ Unfoldings are key to handle tensors

⇒ There are different types of unfoldings

▶ Tensors can be unfolded into vectors (vectorization)

▶ Parsimony can be leveraged via tensor decomposition

⇒ The Kronecker product factorizes a vectorization
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Vectorization and matrization II

▶ Tensor to matrix unfolding (matrization) key in tensor decomposition

▶ Dimensions are rearranged in matrization

⇒ One dimension remains fixed

⇒ The other are grouped into one dimension

▶ Parsimony can be leveraged via low rank

⇒ Low-rank tensor with rank R implies matrix with rank R

⇒ The opposite is not necessarily true but...

⇒ provides alternative parsimonious description (dimension dependent)
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Tensorization and partitions

▶ Matrization and vectorization can be generalized

▶ Tensors can be unfolded into arbitrary low-order tensors

⇒ Matrization is an special case, the lower-order tensor is a matrix

⇒ Vectorization is another, the lower-order tensor is a vector

▶ Partitions define how to unfold a tensor to a lower-order tensor:

⇒ Partitions tells how to group dimensions
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Formalizing partitions

▶ Consider a tensor X of order I :

⇒ Let I := {1, 2, ..., I} denote the set containing all indexes

Definition: Partition

The ordered set P = {P1, ...,PP} is a partition of the set I
if it holds that: Pp ̸= ∅ for all p, Pp ∩ Pp′ = ∅ for all p′ ̸= p,

and
⋃P

p=1 Pp = I.

▶ Partitions are a mechanism to unfold tensors

⇒ They can be used to decompose a tensor X as the sum:

X =
L∑

l=1

Zl (2)

⇒ Where each Zl is a low-order unfolding defined by partition P(l)
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Contribution I

▶ A tensor can be unfolded into various lower-order tensors

⇒ Low rank can be imposed in each low-order tensor

⇒ These unfoldings can be mixed

▶ We propose a Multi-Resolution Low Rank (MRLR) decomposition:

Definition: MRLR decomposition

1. Consider a collection of tensor lower-order representations

2. Postulate a low-rank decomposition for each representation

3. Map each representation back to the original tensor domain

4. Model the tensor as the sum of the low-rank representations

▶ The MRLR decomposition

⇒ exploits information at different resolutions

⇒ leverages parsimony
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Contribution II

▶ Formally, consider a collection of partitions P(1),...,P(L)

⇒ with |P(l)| ≤ |P(l′)| for l < l ′

⇒ Given the I th order tensor X, we propose

X =
L∑

l=1

Zl , with rank
(
tenP(l)(Zl)

)
≤ Rl , (3)

▶ The tensorization operator tenP(Z) yields the |P|th order tensor Ž

Ž = tenP(Z) ∈ R
∏|P1|

j=1 |P1(j)|×...×
∏|PP |

j=1 |PP (j)| (4)

[Ž]k1,...,k|P| = [Z]n1,...,nI and

kp = nPp(1) if |Pp| = 1

kp = nPp(1) +

|Pp|∑
i=2

(nPp(i) − 1)
i−1∏
j=1

NPp(j) if |Pp| > 1
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Ž = tenP(Z) ∈ R
∏|P1|

j=1 |P1(j)|×...×
∏|PP |

j=1 |PP (j)| (4)

[Ž]k1,...,k|P| = [Z]n1,...,nI and

kp = nPp(1) if |Pp| = 1

kp = nPp(1) +

|Pp|∑
i=2

(nPp(i) − 1)
i−1∏
j=1

NPp(j) if |Pp| > 1

Sergio Rozada A Multi-resolution Low-rank Tensor Decomposition 9 / 13



MRLR decomposition

▶ Given a three-dimensional tensor X:

⇒ The partition P(1) = {{1}, {2, 3}} defines the matrix X̌1

⇒ The partition P(2) = {{1, 2, 3}} defines the auto-map X̌2

⇒ The low-rank decompositions Ž1 and Ž2 are estimated

⇒ Ž1 and Ž2 are mapped back, giving Z1 and Z2

⇒ Model the tensor as the sum of Z1 and Z2
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Algorithmic implementation

▶ The MRLR decomposition can be obtained via solving:

min
Z1...ZL

∥∥∥X−
L∑

l=1

Zl

∥∥∥
F

(5)

s. t. rank
(
tenP(l)(Zl)

)
≤ Rl .

▶ The expression in (5) can be worked out

⇒ Sequentially solving for each Zl

⇒ Leveraging low rank in each Zl via the PARAFAC decomposition

min
Hi

1,...,H
i
Ji

∥∥∥X−
L∑
l ̸=i

Zl −
Ri∑
j=1

[Hi
1]j ⊚ ...⊚ [Hi

Ji ]j

∥∥∥
F
. (6)

Sergio Rozada A Multi-resolution Low-rank Tensor Decomposition 11 / 13



Algorithmic implementation

▶ The MRLR decomposition can be obtained via solving:

min
Z1...ZL

∥∥∥X−
L∑

l=1

Zl

∥∥∥
F

(5)

s. t. rank
(
tenP(l)(Zl)

)
≤ Rl .

▶ The expression in (5) can be worked out

⇒ Sequentially solving for each Zl

⇒ Leveraging low rank in each Zl via the PARAFAC decomposition

min
Hi

1,...,H
i
Ji

∥∥∥X−
L∑
l ̸=i

Zl −
Ri∑
j=1

[Hi
1]j ⊚ ...⊚ [Hi

Ji ]j

∥∥∥
F
. (6)

Sergio Rozada A Multi-resolution Low-rank Tensor Decomposition 11 / 13



Numerical studies

▶ MRLR-dec has been tested in three scenarios (left to right):

⇒ The aminoacids dataset, a three-mode tensor (5× 201× 61) → l = 3

⇒ An RGB video signal of 173 frames (3× 173× 1080× 720) → l = 4

⇒ A discretized three-dimensional function f (x1, x2, x3) =
x2
1+x2

2

e|x2+x3| → l = 3

▶ Performance measured in terms of Normalized Frobenius Error

NFE = ||X− X̌||F
/
||X||F . (7)
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Closing remarks

▶ Tensor decompositions are parsimonious high-dimensional models

▶ A new (MRLR) tensor decomposition has been proposed

⇒ to leverage structure at different resolution levels

▶ The MRLR decomposition can be algorithmic implemented

⇒ obtaining each lower-order representation sequentially

⇒ imposing low-rank in each lower-order representation

▶ Practical cases where MRLR outperforms PARAFAC

▶ Future research directions

⇒ Identifiability/ambiguity results

⇒ Intelligent ways of creating the partitions

⇒ Alternative algorithms
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