A Multi-resolution Low-rank Tensor Decomposition

Sergio Rozada
King Juan Carlos University - Madrid, Spain

Joint work with:
A. G. Marques

1EASSP 2022

Singapare
2022 IEEE International Conference on Acoustics, Speech and Signal
Processing - Singapore - May 22-27, 2022

Modelling higher-order structures

- The world is becoming increasingly connected
- Every device is a factory of information
\Rightarrow Smartphones, sensors, etc.
\Rightarrow Enormous datasets - Big Data

Modelling higher-order structures

- The world is becoming increasingly connected
- Every device is a factory of information
\Rightarrow Smartphones, sensors, etc.
\Rightarrow Enormous datasets - Big Data

- Parsimony is key to enhance efficiency in multi-dimensional domains (N_{s}^{D})
\Rightarrow E.g. chemometrics, and psychometrics [Bro97]
- Matrix models have been traditionally used to model these datasets
- Tensor models are breaking through [Papalexakis16]
- Tensor decomposition tries to estimate a set of latent factors that summarize the tensor [Kolda2009]

Tensor Decomposition

- Tensor decomposition tries to estimate a set of latent factors that summarize the tensor [Kolda2009]
- The PARAFAC decomposition generalizes the SVD $\mathbf{X}=\sum_{r=1}^{R} \sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T}$
\Rightarrow Consider the Ith order tensor \mathbf{X}
\Rightarrow Consider the matrices $\mathbf{F}_{i} \in \mathbb{R}^{N_{i} \times R}$ for $i=1, \ldots, l$
\Rightarrow Then, $\underline{\mathbf{X}}$ is said to have rank R if it can be written as

$$
\begin{equation*}
\mathbf{X}=\sum_{r=1}^{R}\left[\mathbf{F}_{1}\right]_{r} \odot\left[\mathbf{F}_{2}\right]_{r} \odot \ldots \odot\left[\mathbf{F}_{1}\right]_{r} \tag{1}
\end{equation*}
$$

\Rightarrow The matrices \mathbf{F}_{i} are obtained via ALS schemes

Vectorization and matrization I

- Tensors can be unfolded into lower order structures

Vectorization and matrization I

- Tensors can be unfolded into lower order structures
- Unfoldings are key to handle tensors
\Rightarrow There are different types of unfoldings

Vectorization and matrization I

- Tensors can be unfolded into lower order structures
- Unfoldings are key to handle tensors
\Rightarrow There are different types of unfoldings
- Tensors can be unfolded into vectors (vectorization)

Vectorization and matrization I

- Tensors can be unfolded into lower order structures
- Unfoldings are key to handle tensors
\Rightarrow There are different types of unfoldings
- Tensors can be unfolded into vectors (vectorization)

- Parsimony can be leveraged via tensor decomposition
\Rightarrow The Kronecker product factorizes a vectorization

Vectorization and matrization II

- Tensor to matrix unfolding (matrization) key in tensor decomposition

Vectorization and matrization II

- Tensor to matrix unfolding (matrization) key in tensor decomposition

- Dimensions are rearranged in matrization
\Rightarrow One dimension remains fixed
\Rightarrow The other are grouped into one dimension

Vectorization and matrization II

- Tensor to matrix unfolding (matrization) key in tensor decomposition

- Dimensions are rearranged in matrization
\Rightarrow One dimension remains fixed
\Rightarrow The other are grouped into one dimension
- Parsimony can be leveraged via low rank
\Rightarrow Low-rank tensor with rank R implies matrix with rank R
\Rightarrow The opposite is not necessarily true but...
\Rightarrow provides alternative parsimonious description (dimension dependent)

Tensorization and partitions

- Matrization and vectorization can be generalized

Tensorization and partitions

- Matrization and vectorization can be generalized
- Tensors can be unfolded into arbitrary low-order tensors
\Rightarrow Matrization is an special case, the lower-order tensor is a matrix
\Rightarrow Vectorization is another, the lower-order tensor is a vector

Tensorization and partitions

- Matrization and vectorization can be generalized
- Tensors can be unfolded into arbitrary low-order tensors
\Rightarrow Matrization is an special case, the lower-order tensor is a matrix
\Rightarrow Vectorization is another, the lower-order tensor is a vector
- Partitions define how to unfold a tensor to a lower-order tensor:
\Rightarrow Partitions tells how to group dimensions

Formalizing partitions

- Consider a tensor \mathbf{X} of order I:
\Rightarrow Let $\mathcal{I}:=\{1,2, \ldots, /\}$ denote the set containing all indexes

Definition: Partition

The ordered set $\mathcal{P}=\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{P}\right\}$ is a partition of the set \mathcal{I} if it holds that: $\mathcal{P}_{p} \neq \emptyset$ for all $p, \mathcal{P}_{p} \cap \mathcal{P}_{p^{\prime}}=\emptyset$ for all $p^{\prime} \neq p$, and $\bigcup_{p=1}^{P} \mathcal{P}_{p}=\mathcal{I}$.

Formalizing partitions

- Consider a tensor \mathbf{X} of order I:
\Rightarrow Let $\mathcal{I}:=\{1,2, \ldots, I\}$ denote the set containing all indexes

Definition: Partition

The ordered set $\mathcal{P}=\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{P}\right\}$ is a partition of the set \mathcal{I} if it holds that: $\mathcal{P}_{p} \neq \emptyset$ for all $p, \mathcal{P}_{p} \cap \mathcal{P}_{p^{\prime}}=\emptyset$ for all $p^{\prime} \neq p$, and $\bigcup_{p=1}^{P} \mathcal{P}_{p}=\mathcal{I}$.

- Partitions are a mechanism to unfold tensors
\Rightarrow They can be used to decompose a tensor $\underline{\mathbf{X}}$ as the sum:

$$
\begin{equation*}
\underline{\mathbf{x}}=\sum_{l=1}^{L} \underline{\underline{Z}}_{l} \tag{2}
\end{equation*}
$$

\Rightarrow Where each $Z_{\text {I }}$ is a low-order unfolding defined by partition $\mathcal{P}^{(1)}$

Contribution I

- A tensor can be unfolded into various lower-order tensors
\Rightarrow Low rank can be imposed in each low-order tensor
\Rightarrow These unfoldings can be mixed

Contribution I

- A tensor can be unfolded into various lower-order tensors
\Rightarrow Low rank can be imposed in each low-order tensor
\Rightarrow These unfoldings can be mixed
- We propose a Multi-Resolution Low Rank (MRLR) decomposition:

Definition: MRLR decomposition

1. Consider a collection of tensor lower-order representations
2. Postulate a low-rank decomposition for each representation
3. Map each representation back to the original tensor domain
4. Model the tensor as the sum of the low-rank representations

Contribution I

- A tensor can be unfolded into various lower-order tensors
\Rightarrow Low rank can be imposed in each low-order tensor
\Rightarrow These unfoldings can be mixed
- We propose a Multi-Resolution Low Rank (MRLR) decomposition:

Definition: MRLR decomposition

1. Consider a collection of tensor lower-order representations
2. Postulate a low-rank decomposition for each representation
3. Map each representation back to the original tensor domain
4. Model the tensor as the sum of the low-rank representations

- The MRLR decomposition
\Rightarrow exploits information at different resolutions
\Rightarrow leverages parsimony

Contribution II

- Formally, consider a collection of partitions $\mathcal{P}^{(1)}, \ldots, \mathcal{P}^{(L)}$
\Rightarrow with $\left|\mathcal{P}^{(I)}\right| \leq\left|\mathcal{P}^{\left(I^{\prime}\right)}\right|$ for $I<I^{\prime}$
\Rightarrow Given the Ith order tensor \mathbf{X}, we propose

$$
\begin{equation*}
\underline{\mathbf{X}}=\sum_{l=1}^{L} \underline{\mathbf{Z}}_{l}, \text { with } \operatorname{rank}\left(\operatorname{ten}_{\mathcal{P}^{(l)}}\left(\underline{\mathbf{Z}}_{l}\right)\right) \leq R_{l}, \tag{3}
\end{equation*}
$$

Contribution II

- Formally, consider a collection of partitions $\mathcal{P}^{(1)}, \ldots, \mathcal{P}^{(L)}$
\Rightarrow with $\left|\mathcal{P}^{(I)}\right| \leq\left|\mathcal{P}^{\left(I^{\prime}\right)}\right|$ for $I<I^{\prime}$
\Rightarrow Given the Ith order tensor \mathbf{X}, we propose

$$
\begin{equation*}
\underline{\mathbf{X}}=\sum_{l=1}^{L} \underline{\mathbf{Z}}_{l}, \text { with } \operatorname{rank}\left(\operatorname{ten}_{\mathcal{P}^{(l)}}\left(\underline{\mathbf{Z}}_{l}\right)\right) \leq R_{l} \tag{3}
\end{equation*}
$$

- The tensorization operator $\operatorname{ten}_{\mathcal{P}}(\underline{\mathbf{Z}})$ yields the $|\mathcal{P}|$ th order tensor $\underline{\underline{Z}}$

$$
\begin{align*}
& \underline{\check{z}}=\operatorname{ten}_{\mathcal{P}}(\underline{\mathbf{Z}}) \in \mathbb{R}^{\prod_{j=1}^{\left|\mathcal{P}_{1}\right|}\left|\mathcal{P}_{1}(j)\right| \times \ldots \times \prod_{j=1}^{\left|\mathcal{P}_{p}\right|}\left|\mathcal{P}_{P}(j)\right|} \tag{4}\\
& \quad[\underset{\mathbf{Z}}{ }]_{k_{1}, \ldots, k_{|\mathcal{P}|} \mid}=[\underline{\mathbf{Z}}]_{n_{1}, \ldots, n_{l}} \text { and } \\
& \quad k_{p}=n_{\mathcal{P}_{p}(1)} \text { if }\left|\mathcal{P}_{p}\right|=1 \\
& \quad k_{p}=n_{\mathcal{P}_{p}(1)}+\sum_{i=2}^{\left|\mathcal{P}_{p}\right|}\left(n_{\mathcal{P}_{p}(i)}-1\right) \prod_{j=1}^{i-1} N_{\mathcal{P}_{p}(j)} \text { if }\left|\mathcal{P}_{p}\right|>1
\end{align*}
$$

MRLR decomposition

- Given a three-dimensional tensor \mathbf{X} :
\Rightarrow The partition $\mathcal{P}^{(1)}=\{\{1\},\{2,3\}\}$ defines the matrix $\check{\mathbf{X}}_{1}$
\Rightarrow The partition $\mathcal{P}^{(2)}=\{\{1,2,3\}\}$ defines the auto-map $\check{\mathbf{X}}_{2}$
\Rightarrow The low-rank decompositions $\underline{\underline{Z}}_{1}$ and $\underline{\mathbf{Z}}_{2}$ are estimated
$\Rightarrow \underline{\mathbf{Z}}_{1}$ and $\underline{\mathbf{Z}}_{2}$ are mapped back, giving $\underline{\mathbf{Z}}_{1}$ and $\underline{\mathbf{Z}}_{2}$
\Rightarrow Model the tensor as the sum of $\underline{\mathbf{Z}}_{1}$ and $\underline{\mathbf{Z}}_{2}$

Algorithmic implementation

- The MRLR decomposition can be obtained via solving:

$$
\begin{equation*}
\min _{\underline{Z}_{1} \ldots \mathbf{Z}_{L}}\left\|\underline{\mathbf{X}}-\sum_{l=1}^{L} \underline{Z}_{l}\right\|_{F} \tag{5}
\end{equation*}
$$

s. t. $\operatorname{rank}\left(\operatorname{ten}_{\mathcal{P}^{(l)}}\left(\mathbb{Z}_{l}\right)\right) \leq R_{l}$.

Algorithmic implementation

- The MRLR decomposition can be obtained via solving:

$$
\begin{equation*}
\min _{\underline{Z}_{1} \ldots \underline{Z}_{L}}\left\|\underline{\mathbf{X}}-\sum_{l=1}^{L} \underline{Z}_{l}\right\|_{F} \tag{5}
\end{equation*}
$$

s. t. $\operatorname{rank}\left(\operatorname{ten}_{\mathcal{P}^{(1)}}\left(\underline{Z}_{l}\right)\right) \leq R_{l}$.

- The expression in (5) can be worked out
\Rightarrow Sequentially solving for each $\mathbf{Z}_{\text {I }}$
\Rightarrow Leveraging low rank in each $\underline{\mathbf{Z}}_{I}$ via the PARAFAC decomposition

$$
\begin{equation*}
\min _{\mathbf{H}_{1}^{i}, \ldots, \mathbf{H}_{j_{i}}^{j}}\left\|\mathbf{X}-\sum_{l \neq i}^{L} \underline{\mathbf{Z}}_{I}-\sum_{j=1}^{R_{i}}\left[\mathbf{H}_{1}^{i}\right]_{j} \odot \ldots \odot\left[\mathbf{H}_{j i}^{i}\right]_{j}\right\|_{F} . \tag{6}
\end{equation*}
$$

Numerical studies

- MRLR-dec has been tested in three scenarios (left to right):
\Rightarrow The aminoacids dataset, a three-mode tensor $(5 \times 201 \times 61) \rightarrow I=3$
\Rightarrow An RGB video signal of 173 frames $(3 \times 173 \times 1080 \times 720) \rightarrow I=4$
\Rightarrow A discretized three-dimensional function $f\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}+x_{2}^{2}}{e^{\left|x_{2}+x_{3}\right|}} \rightarrow I=3$

Numerical studies

- MRLR-dec has been tested in three scenarios (left to right):
\Rightarrow The aminoacids dataset, a three-mode tensor $(5 \times 201 \times 61) \rightarrow I=3$
\Rightarrow An RGB video signal of 173 frames $(3 \times 173 \times 1080 \times 720) \rightarrow I=4$
\Rightarrow A discretized three-dimensional function $f\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}+x_{2}^{2}}{e^{\left|x_{2}+x_{3}\right|}} \rightarrow I=3$
- Performance measured in terms of Normalized Frobenius Error

$$
\begin{equation*}
\mathrm{NFE}=\| \underline{\mathbf{X}}-{\check{\underline{\mathbf{x}}}\left\|_{F} /\right\| \mathbf{X} \|_{F} .} \tag{7}
\end{equation*}
$$

Numerical studies

- MRLR-dec has been tested in three scenarios (left to right):
\Rightarrow The aminoacids dataset, a three-mode tensor $(5 \times 201 \times 61) \rightarrow I=3$
\Rightarrow An RGB video signal of 173 frames $(3 \times 173 \times 1080 \times 720) \rightarrow I=4$
\Rightarrow A discretized three-dimensional function $f\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{2}+x_{2}^{2}}{e^{\left|x_{2}+x_{3}\right|}} \rightarrow I=3$
- Performance measured in terms of Normalized Frobenius Error

$$
\begin{equation*}
\mathrm{NFE}=\|\underline{\mathbf{X}}-\check{\mathbf{x}}\|_{F} /\|\underline{\mathbf{X}}\|_{F} . \tag{7}
\end{equation*}
$$

Closing remarks

- Tensor decompositions are parsimonious high-dimensional models

Closing remarks

- Tensor decompositions are parsimonious high-dimensional models
- A new (MRLR) tensor decomposition has been proposed
\Rightarrow to leverage structure at different resolution levels

Closing remarks

- Tensor decompositions are parsimonious high-dimensional models
- A new (MRLR) tensor decomposition has been proposed
\Rightarrow to leverage structure at different resolution levels
- The MRLR decomposition can be algorithmic implemented
\Rightarrow obtaining each lower-order representation sequentially
\Rightarrow imposing low-rank in each lower-order representation

Closing remarks

- Tensor decompositions are parsimonious high-dimensional models
- A new (MRLR) tensor decomposition has been proposed
\Rightarrow to leverage structure at different resolution levels
- The MRLR decomposition can be algorithmic implemented
\Rightarrow obtaining each lower-order representation sequentially
\Rightarrow imposing low-rank in each lower-order representation
- Practical cases where MRLR outperforms PARAFAC

Closing remarks

- Tensor decompositions are parsimonious high-dimensional models
- A new (MRLR) tensor decomposition has been proposed
\Rightarrow to leverage structure at different resolution levels
- The MRLR decomposition can be algorithmic implemented
\Rightarrow obtaining each lower-order representation sequentially
\Rightarrow imposing low-rank in each lower-order representation
- Practical cases where MRLR outperforms PARAFAC
- Future research directions
\Rightarrow Identifiability/ambiguity results
\Rightarrow Intelligent ways of creating the partitions
\Rightarrow Alternative algorithms

