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Robust problem formulation

Multi-dimensional data Tensorization

» Multi-dimensional arrays, or tensors, model highly-dimensional data » Matrization and vectorization can be generalized » The MRLR needs to be formalized
» Tensors generalize the concept of vectors and matrices to highly-dimensional domains » Tensors can be unfolded into arbitrary low-order tensors = Consider a known tensor X
= Relevant in ghemometrlcs, communlcat.lons, or psychometrics [1, 2] = Matrlzgtlop |s.an special case, the lower-order tgnsor IS a matrix MRLR decomposition optimization problem
» Tensor decomposition is key to leverage parsimony = Vectorization is another, the lower-order tensor is a vector » ; . .
. . . .. - _ The MRLR decomposition can be obtained via solving:
» Tensor decomposition generalizes matrix-decomposition [3, 4] » Partitions define how to unfold a tensor to a lower-order tensor: ]
= Partitions tells how to group dimensions i |)_( _ Z ZIH (4)
Zq..2] 1 F
S. t. rank(tenP(,)(Z/)) < R,
tenp () Algorith |
v orithmic implementation
N — X
P, = {2,3} . .
Stacking matrices to create a 3D tensor T = {1 2 3} P = {P1, P2} > The expressm.n n (4) C_an be worked out
T = Sequentially solving for each Z;
Tensorization = Leveraging low rank in each £, via the PARAFAC decomposition

Preliminaries of tensor decomposition

MRLR decomposition optimization problem

Design idea 1: Partitions

» The PARAFAC decomposition generalizes the SVD X = 25:1 g,u,vrT The MRLR decomposition optimization problem becomes now:
» Consider the /th order tensor X » Consider a tensor X of order /: o I .
. . . . - c | ) | .
> Consider the matrices F; € RN*ffori=1, ...,/ = LetZ :={1,2, ..., I} denote the set containing all indexes H,m'”H, |)—( - ZZ/ - Z[Hﬂ/ ©...© [HJ,-]/ |,:' (5)
» Then, X is said to have rank R if it can be written as LY I#£i j=1
R

X=> [Filr®[Falr@ ..o [F] (1) The ordered set P = {Pq, ..., Pp} is a partition of the set Z if it holds that: Pp # () for all p, Numerical results
r=1

N — () for all p’ cand | ) =7. " . . .
= The aminoacids dataset, a three-mode tensor (5 x 201 x 61) - /=3

[Fs]; [Fslr o : i i _
/ / Design idea 2: Tensor unfolding = An RGB video signal of 173 frames (3 x 173 x 1080 x 7)(%(3))(2—> [ =4
3N entries 3N entries = A discretized three-dimensional function f(xy, Xp, X3) = — 12, — | =3
~ [ ] [ ] . v _ | | e
I, o T [F]r » The tensor X can be re-arranged into a lower-order tensor X » Performance measured in terms of Normalized Frobenius Error
I I NFE = ||X — X||£/|IX]|. (6)
Nentries X [F1]1 [Fi]r The elements of the lower-order tensor X are defined as follows zz | o '\\ R B S S 5; \ e |PARAFAC |
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Vectorization and matrization Kp = Np (1) if Pp| =1 P S MRLR-res ; | & *. :
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» Tensors can be unfolded into lower order structures p) e ) i1 ) Frarameters P s #Parameters

=- Tensors can be unfolded into vectors (vectorization)
= Tensor to matrix unfolding (matrization) key in tensor decomposition
=- Similarly, tensors can be unfolded into vectors (vectorization) Contribution: MR-LR Tensor Decomposition

» For the same number of parameters, the MRLR decomposition outperforms PARAFAC
» The MRLR decomposition depends on the partitions

» Parsimony can be leveraged via tensor decomposition
= The Kronecker product factorizes a vectorization
= Low-rank tensor with rank R implies matrix with rank R
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