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Multi-dimensional data

▶ Multi-dimensional arrays, or tensors, model highly-dimensional data
▶ Tensors generalize the concept of vectors and matrices to highly-dimensional domains

⇒ Relevant in chemometrics, communications, or psychometrics [1, 2]
▶ Tensor decomposition is key to leverage parsimony
▶ Tensor decomposition generalizes matrix-decomposition [3, 4]

Stacking matrices to create a 3D tensor

Preliminaries of tensor decomposition

▶ The PARAFAC decomposition generalizes the SVD X =
∑R

r=1 σrurvT
r

▶ Consider the Ith order tensor X
▶ Consider the matrices Fi ∈ RNi×R for i = 1, ..., I
▶ Then, X is said to have rank R if it can be written as

X =
R∑

r=1

[F1]r ⊚ [F2]r ⊚ ...⊚ [FI]r (1)

▶ The matrices Fi are obtained via ALS schemes

Tensor decomposition

Vectorization and matrization

▶ Tensors can be unfolded into lower order structures
⇒ Tensors can be unfolded into vectors (vectorization)
⇒ Tensor to matrix unfolding (matrization) key in tensor decomposition
⇒ Similarly, tensors can be unfolded into vectors (vectorization)

▶ Parsimony can be leveraged via tensor decomposition
⇒ The Kronecker product factorizes a vectorization
⇒ Low-rank tensor with rank R implies matrix with rank R

Parsimony in vectorizations

Tensorization

▶ Matrization and vectorization can be generalized
▶ Tensors can be unfolded into arbitrary low-order tensors

⇒ Matrization is an special case, the lower-order tensor is a matrix
⇒ Vectorization is another, the lower-order tensor is a vector

▶ Partitions define how to unfold a tensor to a lower-order tensor:
⇒ Partitions tells how to group dimensions

Tensorization

Design idea 1: Partitions

▶ Consider a tensor X of order I:
⇒ Let I := {1,2, ..., I} denote the set containing all indexes

Partition
The ordered set P = {P1, ...,PP} is a partition of the set I if it holds that: Pp ̸= ∅ for all p,
Pp ∩ Pp′ = ∅ for all p′ ̸= p, and

⋃P
p=1 Pp = I.

Design idea 2: Tensor unfolding

▶ The tensor X can be re-arranged into a lower-order tensor X̌

Tensorization
The elements of the lower-order tensor X̌ are defined as follows

X̌ = tenP(X) ∈ R
∏|P1|

j=1 |P1(j)|×...×
∏|PP |

j=1 |PP(j)| (2)
[X̌]k1,...,k|P|

= [X]n1,...,nI and

kp = nPp(1) if |Pp| = 1

kp = nPp(1) +

|Pp|∑
i=2

(nPp(i) − 1)
i−1∏
j=1

NPp(j) if |Pp| > 1

Contribution: MR-LR Tensor Decomposition

▶ We propose a Multi-Resolution Low Rank (MRLR) decomposition:
⇒ Consider a collection of lower-order representations of the tensor
⇒ Postulate a low-rank decomposition for each representation
⇒ Map each representation back to the original tensor domain
⇒ Model the tensor as the sum of the low-rank representations

MRLR decomposition

Formally, consider a collection of partitions P(1),...,P(L) with |P(l)| ≤ |P(l ′)| for l < l ′. Given
the Ith order tensor X, we propose

X =
L∑

l=1

Zl , with rank
(
tenP(l)(Zl)

)
≤ Rl , (3)

Robust problem formulation

▶ The MRLR needs to be formalized
⇒ Consider a known tensor X

MRLR decomposition optimization problem
The MRLR decomposition can be obtained via solving:

min
Z1...ZL

∥∥∥X −
L∑

l=1

Zl

∥∥∥
F

(4)

s. t. rank
(
tenP(l)(Zl)

)
≤ Rl .

Algorithmic implementation

▶ The expression in (4) can be worked out
⇒ Sequentially solving for each Zl
⇒ Leveraging low rank in each Zl via the PARAFAC decomposition

MRLR decomposition optimization problem
The MRLR decomposition optimization problem becomes now:

min
Hi

1,...,H
i
Ji

∥∥∥X −
L∑

l ̸=i

Zl −
Ri∑

j=1

[Hi
1]j ⊚ ...⊚ [Hi

Ji
]j

∥∥∥
F
. (5)

Numerical results

▶ MRLR decomposition has been tested in three scenarios (left to right):
⇒ The aminoacids dataset, a three-mode tensor (5 × 201 × 61) → l = 3
⇒ An RGB video signal of 173 frames (3 × 173 × 1080 × 720) → l = 4

⇒ A discretized three-dimensional function f (x1, x2, x3) =
x2

1+x2
2

e|x2+x3|
→ l = 3

▶ Performance measured in terms of Normalized Frobenius Error

NFE = ||X − X̌||F
/
||X||F . (6)

▶ For the same number of parameters, the MRLR decomposition outperforms PARAFAC
▶ The MRLR decomposition depends on the partitions
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