Change-Point Detection of Gaussian Graph Signals with Partial Information

Yanxi Chen, Xianghui Mao, Dan Ling, Yuantao Gu

¹Department of Electronic Engineering Tsinghua University

April 19, 2018

Yanxi Chen, et al. (Tsinghua University) Change-Point Detection of Graph Signals

April 19, 2018 1 / 12

Change-Point Detection

- A sequence of signals $\mathbf{x}^t \in \mathbb{R}^N, t = 1, 2, \dots$
- Change-point $T_c \ge 1$
- $t < T_c, \mathcal{H}_0 : \mathbf{x}^t \sim P_0$, with p.d.f. $f_0(\mathbf{x}^t)$
- $t \geq T_c, \mathcal{H}_1 : \mathbf{x}^t \sim P_1$, with p.d.f. $f_1(\mathbf{x}^t)$

Change-Point Detection

- A sequence of signals $\mathbf{x}^t \in \mathbb{R}^N, t = 1, 2, \dots$
- Change-point $T_c \ge 1$
- $t < T_c, \mathcal{H}_0 : \mathbf{x}^t \sim P_0$, with p.d.f. $f_0(\mathbf{x}^t)$
- $t \geq T_c, \mathcal{H}_1 : \mathbf{x}^t \sim P_1$, with p.d.f. $f_1(\mathbf{x}^t)$

Cumulative Sum (CUSUM)

- Score $L^t : \mathbb{E}[L^t | \mathcal{H}_0] < 0, \mathbb{E}[L^t | \mathcal{H}_1] > 0$
- Log-likelihood ratio (LLR) $L^t = \log(f_1(\mathbf{x}^t)/f_0(\mathbf{x}^t))$
- Stopping time $T_s = \inf\{t > 0 : \max_{1 \le i \le t} \sum_{k=i}^t L^k \ge b\}$
- ▶ Recursive: $y^0 = 0$, $y^t = \max\{y^{t-1} + L^t, 0\}$, $T_s = \inf\{t > 0 : y^t \ge b\}$

· · · · · · · · ·

Change-Point Detection

- A sequence of signals $\mathbf{x}^t \in \mathbb{R}^N, t = 1, 2, \dots$
- Change-point $T_c \ge 1$
- $t < T_c, \mathcal{H}_0 : \mathbf{x}^t \sim P_0$, with p.d.f. $f_0(\mathbf{x}^t)$
- $t \geq T_c, \mathcal{H}_1 : \mathbf{x}^t \sim P_1$, with p.d.f. $f_1(\mathbf{x}^t)$

Cumulative Sum (CUSUM)

- Score $L^t : \mathbb{E}[L^t | \mathcal{H}_0] < 0, \mathbb{E}[L^t | \mathcal{H}_1] > 0$
- Log-likelihood ratio (LLR) $L^t = \log(f_1(\mathbf{x}^t)/f_0(\mathbf{x}^t))$
- Stopping time $T_s = \inf\{t > 0 : \max_{1 \le i \le t} \sum_{k=i}^t L^k \ge b\}$
- Recursive: $y^0 = 0$, $y^t = \max\{y^{t-1} + L^t, 0\}$, $T_s = \inf\{t > 0 : y^t \ge b\}$

Performance: Average Running Length (ARL)

- $ARL_0 = \mathbb{E}[\mathcal{T}_s | \mathcal{T}_c = \infty]$: false-alarm rate $1/ARL_0$
- $ARL_1 = \mathbb{E}[T_s | T_c = 1]$: detection delay

・ロト ・ 一下・ ・ ヨト

Figure: Change-point detection of Gaussian graph signals.

Graph Signal Processing (GSP)

- Graph G = (V, E), |V| = N; signal $\mathbf{x} \in \mathbb{R}^N$
- Adjacent matrix $\mathbf{A} \in \{0, 1\}^{N \times N}$
- ► Laplacian $\mathbf{L} = \mathbf{D} \mathbf{A}$, where **D** is diagonal, $D_{ii} = \sum_{j=1}^{N} A_{ji}$
- \blacktriangleright Eigen-decomposition $\bm{L} = \bm{V}\bm{\Lambda}\bm{V}^{\mathrm{T}}$, $\mathrm{diag}\{\bm{\Lambda}\}$ sorted in ascend
- ► Fourier transform $\hat{\mathbf{x}} = \mathbf{V}^{\mathrm{T}}\mathbf{x}$, inverse transform $\mathbf{x} = \mathbf{V}\hat{\mathbf{x}}$
- ▶ *K*-bandlimited (smoothness): $\hat{x}_i = 0, \forall i \in \{K + 1, ..., N\}$

Problem Formulation

►
$$t < T_C$$
: $\mathbf{x}^t \sim \mathcal{N}(\boldsymbol{\mu}_0, \sigma^2 \mathbf{I}_N)$, $\mathbf{x}^t = \boldsymbol{\mu}_0 + \mathbf{e}^t$

$$t \geq T_C: \mathbf{x}^t \sim \mathcal{N}(\boldsymbol{\mu}_1, \sigma^2 \mathbf{I}_N), \, \mathbf{x}^t = \boldsymbol{\mu}_1 + \mathbf{e}^t$$

Problem Formulation

►
$$t < T_C$$
: $\mathbf{x}^t \sim \mathcal{N}(\boldsymbol{\mu}_0, \sigma^2 \mathbf{I}_N)$, $\mathbf{x}^t = \boldsymbol{\mu}_0 + \mathbf{e}^t$

$$\blacktriangleright t \geq T_C: \mathbf{x}^t \sim \mathcal{N}(\boldsymbol{\mu}_1, \sigma^2 \mathbf{I}_N), \, \mathbf{x}^t = \boldsymbol{\mu}_1 + \mathbf{e}^t$$

Assumptions

- μ_0, σ^2 are known, but μ_1 is unknown
- μ_0 is *K*-bandlimited, while $\mu_1 = \mu_0 + \mathbf{V} \hat{\mu}_h$ is full-band

Problem Formulation

►
$$t < T_C$$
: $\mathbf{x}^t \sim \mathcal{N}(\boldsymbol{\mu}_0, \sigma^2 \mathbf{I}_N)$, $\mathbf{x}^t = \boldsymbol{\mu}_0 + \mathbf{e}^t$

$$\blacktriangleright \ t \geq T_C: \ \mathbf{x}^t \sim \mathcal{N}(\boldsymbol{\mu}_1, \sigma^2 \mathbf{I}_N), \ \mathbf{x}^t = \boldsymbol{\mu}_1 + \mathbf{e}^t$$

Assumptions

- μ_0, σ^2 are known, but μ_1 is unknown
- μ_0 is *K*-bandlimited, while $\mu_1 = \mu_0 + \mathbf{V} \hat{\mu}_h$ is full-band

Log-likelihood ratio
$$L^t = \log \frac{f_1(\mathbf{x}^t)}{f_0(\mathbf{x}^t)} = \frac{\|\mathbf{e}^t\|_2^2 - \|\mathbf{e}^t - \mathbf{V}\hat{\boldsymbol{\mu}}_h\|_2^2}{2\sigma^2}$$

• Problem: $\hat{\mu}_h$ is unknown

Problem Formulation

►
$$t < T_C$$
: $\mathbf{x}^t \sim \mathcal{N}(\boldsymbol{\mu}_0, \sigma^2 \mathbf{I}_N)$, $\mathbf{x}^t = \boldsymbol{\mu}_0 + \mathbf{e}^t$

$$\blacktriangleright \ t \geq T_C: \ \mathbf{x}^t \sim \mathcal{N}(\boldsymbol{\mu}_1, \sigma^2 \mathbf{I}_N), \ \mathbf{x}^t = \boldsymbol{\mu}_1 + \mathbf{e}^t$$

Assumptions

- μ_0, σ^2 are known, but μ_1 is unknown
- ▶ μ_0 is *K*-bandlimited, while $\mu_1 = \mu_0 + V \hat{\mu}_h$ is full-band

Log-likelihood ratio
$$L^t = \log \frac{f_1(\mathbf{x}^t)}{f_0(\mathbf{x}^t)} = \frac{\|\mathbf{e}^t\|_2^2 - \|\mathbf{e}^t - \mathbf{V}\hat{\boldsymbol{\mu}}_h\|_2^2}{2\sigma^2}$$

• Problem: $\hat{\mu}_h$ is unknown

Solution

• Maximization:
$$L^t = \max_{\hat{\mu}_h} \frac{\|\mathbf{e}^t\|_2^2 - \|\mathbf{e}^t - \mathbf{V}\hat{\mu}_h\|_2^2}{2\sigma^2} = \frac{\|\hat{\mathbf{e}}_h^t\|_2^2}{2\sigma^2}$$

• Correction:
$$L^t = \frac{\|\hat{\mathbf{e}}_{j_1}^t\|_2^2}{2\sigma^2} - \frac{N-K}{2} - \delta$$
, $\mathbb{E}[L^t|\mathcal{H}_0] = -\delta < 0$

Algorithm

- Parameters: $N, K, \mu_0, \sigma^2, b, \delta$
- Initialize: $y^0 = 0$; estimate μ_0 from historical data
- ► Projection: $\mathbf{r} \leftarrow \mathbf{x}^t \mu_0$, $\hat{\mathbf{r}} \leftarrow \mathbf{V}^T \mathbf{r}$, $\hat{\mathbf{r}}_h \leftarrow \hat{\mathbf{r}}_{K+1:N}$
- Maximization and correction: $L^t \leftarrow \frac{\|\hat{r}_h\|_2^2}{2\sigma^2} \frac{N-K}{2} \delta$
 - $\mathbb{E}[L^t|\mathcal{H}_0] = -\delta < 0, \mathbb{E}[L^t|\mathcal{H}_1] = \frac{\|\hat{\mu}_h\|_2^2}{2\sigma^2} \delta > 0$
- Recursive CUSUM: $y^t \leftarrow \max\{y^{t-1} + L^t, 0\}$
- ▶ Inference: if $y^t \ge b$, then stopping time $T_s \leftarrow t$, detection is done

Algorithm

- Parameters: $N, K, \mu_0, \sigma^2, b, \delta$
- Initialize: $y^0 = 0$; estimate μ_0 from historical data
- ► Projection: $\mathbf{r} \leftarrow \mathbf{x}^t \boldsymbol{\mu}_0$, $\hat{\mathbf{r}} \leftarrow \mathbf{V}^T \mathbf{r}$, $\hat{\mathbf{r}}_h \leftarrow \hat{\mathbf{r}}_{K+1:N}$
- Maximization and correction: $L^t \leftarrow \frac{\|\hat{r}_h\|_2^2}{2\sigma^2} \frac{N-K}{2} \delta$
 - $\blacktriangleright \mathbb{E}[L^t|\mathcal{H}_0] = -\delta < 0, \mathbb{E}[L^t|\mathcal{H}_1] = \frac{\|\hat{\boldsymbol{\mu}}_b\|_2^2}{2\sigma^2} \delta > 0$
- Recursive CUSUM: $y^t \leftarrow \max\{y^{t-1} + L^t, 0\}$

• Inference: if $y^t \ge b$, then stopping time $T_s \leftarrow t$, detection is done Extension: both μ_0, μ_1 are arbitrary (no *a priori* on bandwidth)

• Trick: w.l.o.g. set $\boldsymbol{\mu}_0 = \boldsymbol{0}$, then bandwidth K = 0

►
$$L^{t} = \frac{\|\hat{\mathbf{r}}_{h}\|_{2}^{2}}{2\sigma^{2}} - \frac{N-K}{2} - \delta = \frac{\|\mathbf{r}\|_{2}^{2}}{2\sigma^{2}} - \frac{N}{2} - \delta$$

Algorithm

- Parameters: $N, K, \mu_0, \sigma^2, b, \delta$
- Initialize: $y^0 = 0$; estimate μ_0 from historical data
- ► Projection: $\mathbf{r} \leftarrow \mathbf{x}^t \boldsymbol{\mu}_0$, $\hat{\mathbf{r}} \leftarrow \mathbf{V}^T \mathbf{r}$, $\hat{\mathbf{r}}_h \leftarrow \hat{\mathbf{r}}_{K+1:N}$
- Maximization and correction: $L^t \leftarrow \frac{\|\hat{r}_h\|_2^2}{2\sigma^2} \frac{N-K}{2} \delta$
 - $\blacktriangleright \mathbb{E}[L^t|\mathcal{H}_0] = -\delta < 0, \mathbb{E}[L^t|\mathcal{H}_1] = \frac{\|\hat{\mu}_b\|_2^2}{2\sigma^2} \delta > 0$
- Recursive CUSUM: $y^t \leftarrow \max\{y^{t-1} + L^t, 0\}$

• Inference: if $y^t \ge b$, then stopping time $T_s \leftarrow t$, detection is done Extension: both μ_0, μ_1 are arbitrary (no *a priori* on bandwidth)

• Trick: w.l.o.g. set $\boldsymbol{\mu}_0 = \boldsymbol{0}$, then bandwidth K = 0

►
$$L^t = \frac{\|\hat{\mathbf{r}}_h\|_2^2}{2\sigma^2} - \frac{N-K}{2} - \delta = \frac{\|\mathbf{r}\|_2^2}{2\sigma^2} - \frac{N}{2} - \delta$$

Further extension: noise variance σ_i^2 for *i*-th vertex

•
$$L^t = \sum_{i=1}^{N} \frac{r_i^2}{2\sigma_i^2} - \frac{N}{2} - \delta, \mathbb{E}[L^t | \mathcal{H}_1] = \sum_{i=1}^{N} \frac{\mu_{1i}^2}{2\sigma_{i}^2} - \delta$$

Distributed algorithm

(no fusion center; each vertex only communicates with its neighbors)

- ► Parameters: N, σ^2, b, δ ; $\mathbf{W} : \sum_{u \in N(v)} W_{vu} = 1, \forall v$
- ▶ Initialize: $y_v^0 = 0, z_v^0 = 0, \forall v \in \{1, 2, ..., N\}$
- Maximization and correction: $L_v^t \leftarrow \frac{|x_v^t|^2}{2\sigma^2} \frac{1}{2} \delta$
- ► Local CUSUM: $o_v^t \leftarrow y_v^{t-1}$, $y_v^t \leftarrow \max\{y_v^{t-1} + L_v^t, 0\}$
- ► Communication: $z_v^t \leftarrow \sum_{u \in N(v)} W_{vu}(z_u^{t-1} + y_u^t o_u^t)$
- ▶ Inference: if $\max_{v} z_{v}^{t} \ge b$, then $T_{s} \leftarrow t$, detection is done

(Reference: Qinghua Liu and Yao Xie, "Distributed Change Detection Based on Average Consensus", arXiv preprint arXiv:1710.10378, 2017.)

Discussions

▶ Performance analysis: sub-exponential distribution of L^t under both \mathcal{H}_0 and $\mathcal{H}_1 \Rightarrow ARL_0 \sim \exp(b), ARL_1 \approx \frac{b}{\mathbb{E}[L^t|\mathcal{H}_1]}$

Discussions

- ▶ Performance analysis: sub-exponential distribution of L^t under both \mathcal{H}_0 and $\mathcal{H}_1 \Rightarrow ARL_0 \sim \exp(b), ARL_1 \approx \frac{b}{\mathbb{E}[L^t|\mathcal{H}_1]}$
- Advantages of algorithm: as efficient as pure CUSUM (detection without estimation); can handle time-varying post-change distribution parameters

Discussions

- ▶ Performance analysis: sub-exponential distribution of L^t under both \mathcal{H}_0 and $\mathcal{H}_1 \Rightarrow ARL_0 \sim \exp(b), ARL_1 \approx \frac{b}{\mathbb{E}[L^t|\mathcal{H}_1]}$
- Advantages of algorithm: as efficient as pure CUSUM (detection without estimation); can handle time-varying post-change distribution parameters
- ► Role of GSP: a priori knowledge of µ₀, µ₁ can improve performance in ARL

Discussions

- ▶ Performance analysis: sub-exponential distribution of L^t under both \mathcal{H}_0 and $\mathcal{H}_1 \Rightarrow ARL_0 \sim \exp(b), ARL_1 \approx \frac{b}{\mathbb{E}[L^t|\mathcal{H}_1]}$
- Advantages of algorithm: as efficient as pure CUSUM (detection without estimation); can handle time-varying post-change distribution parameters
- Role of GSP: a priori knowledge of μ₀, μ₁ can improve performance in ARL
- Reflection: obtain a qualified CUSUM score L^t based on (but beyond) log-likelihood ratio
 - Maximization and correction: for unknown post-change parameter θ_1 , $L^t = \max_{\theta_1} \log \frac{f_1(\mathbf{x}^t | \theta_1)}{f_0(\mathbf{x}^t)} - C$ such that $\mathbb{E}[L^t | \mathcal{H}_0] < 0$ and $\mathbb{E}[L^t | \mathcal{H}_1] > 0$

Experiments

Synthetic data: random graph with N = 100, edge probability p = 0.3, $\mu_0 = \mathbf{0}, \|\mu_1\| = 1, \sigma = 0.2$

Experiments

Real-world data: Manhattan taxi pickup in 2014 and 2015, N = 13679

- Estimate μ_0 and $\{\sigma_i^2\}$ from data of 2014
- Simulate small, additive anomalies in data of 2015 after $T_c = 150$
 - 1. Add a constant 5 to the 112 green vertices
 - 2. Add an increament $\sim \text{Uniform}\{1, 2, \dots, 9\}$ to green vertices, *i.i.d.* among time steps and vertices
 - 3. Add an increament ~ Uniform{1,2,3,4} to 112 randomly chosen vertices, *i.i.d.* among time steps and vertices

Summary

Contributions

- Obtain a qualified CUSUM score L^t via maximization and correction of log-likelihood ratio: efficient and practical; can handle time-varying post-change distribution parameter
- Centralized and distributed algorithms
- Utilize graph structure to improve performance

Summary

Contributions

- Obtain a qualified CUSUM score L^t via maximization and correction of log-likelihood ratio: efficient and practical; can handle time-varying post-change distribution parameter
- Centralized and distributed algorithms
- Utilize graph structure to improve performance

Thank you for your attention!