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Backgrounds

Change-Point Detection

I A sequence of signals xt ∈ RN , t = 1, 2, . . .

I Change-point Tc ≥ 1

I t < Tc ,H0 : xt ∼ P0, with p.d.f. f0(xt)

I t ≥ Tc ,H1 : xt ∼ P1, with p.d.f. f1(xt)

Cumulative Sum (CUSUM)

I Score Lt : E[Lt |H0] < 0,E[Lt |H1] > 0

I Log-likelihood ratio (LLR) Lt = log(f1(xt)/f0(xt))

I Stopping time Ts = inf{t > 0 : max1≤i≤t
∑t

k=i L
k ≥ b}

I Recursive: y0 = 0, y t = max{y t−1 + Lt , 0}, Ts = inf{t > 0 : y t ≥ b}
Performance: Average Running Length (ARL)

I ARL0 = E[Ts |Tc =∞]: false-alarm rate 1/ARL0

I ARL1 = E[Ts |Tc = 1]: detection delay
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Figure: Change-point detection of Gaussian graph signals.
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Backgrounds

Graph Signal Processing (GSP)

I Graph G = (V ,E ), |V | = N; signal x ∈ RN

I Adjacent matrix A ∈ {0, 1}N×N

I Laplacian L = D− A, where D is diagonal, Dii =
∑N

j=1 Aji

I Eigen-decomposition L = VΛVT, diag{Λ} sorted in ascend

I Fourier transform x̂ = VTx, inverse transform x = Vx̂

I K -bandlimited (smoothness): x̂i = 0, ∀i ∈ {K + 1, . . . ,N}
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Problem Formulation and Algorithms

Problem Formulation

I t < TC : xt ∼ N (µ0, σ
2IN), xt = µ0 + et

I t ≥ TC : xt ∼ N (µ1, σ
2IN), xt = µ1 + et

Assumptions

I µ0, σ
2 are known, but µ1 is unknown

I µ0 is K -bandlimited, while µ1 = µ0 + Vµ̂h is full-band

Log-likelihood ratio Lt = log f1(xt)
f0(xt)

=
‖et‖22−‖et−Vµ̂h‖22

2σ2

I Problem: µ̂h is unknown

Solution

I Maximization: Lt = maxµ̂h

‖et‖22−‖et−Vµ̂h‖22
2σ2 =

‖êth‖
2
2

2σ2

I Correction: Lt =
‖êth‖

2
2

2σ2 − N−K
2 − δ, E[Lt |H0] = −δ < 0
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Problem Formulation and Algorithms

Algorithm

I Parameters: N,K ,µ0, σ
2, b, δ

I Initialize: y0 = 0; estimate µ0 from historical data

I Projection: r← xt − µ0, r̂← VT r, r̂h ← r̂K+1:N

I Maximization and correction: Lt ← ‖r̂h‖22
2σ2 − N−K

2 − δ
I E[Lt |H0] = −δ < 0,E[Lt |H1] =

‖µ̂h‖
2
2

2σ2 − δ > 0

I Recursive CUSUM: y t ← max{y t−1 + Lt , 0}
I Inference: if y t ≥ b, then stopping time Ts ← t, detection is done

Extension: both µ0,µ1 are arbitrary (no a priori on bandwidth)

I Trick: w.l.o.g. set µ0 = 0, then bandwidth K = 0

I Lt =
‖r̂h‖22
2σ2 − N−K

2 − δ =
‖r‖22
2σ2 − N

2 − δ
Further extension: noise variance σ2i for i-th vertex

I Lt =
∑N

i=1
r2i
2σ2

i
− N

2 − δ,E[Lt |H1] =
∑N

i=1
µ2
1i

2σ2
i
− δ
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Problem Formulation and Algorithms

Distributed algorithm
(no fusion center; each vertex only communicates with its neighbors)

I Parameters: N, σ2, b, δ; W :
∑

u∈N(v)Wvu = 1,∀v
I Initialize: y0v = 0, z0v = 0, ∀v ∈ {1, 2, . . . ,N}
I Maximization and correction: Ltv ←

|x tv |2
2σ2 − 1

2 − δ
I Local CUSUM: otv ← y t−1v , y tv ← max{y t−1v + Ltv , 0}
I Communication: z tv ←

∑
u∈N(v)Wvu(z t−1u + y tu − otu)

I Inference: if maxv z
t
v ≥ b, then Ts ← t, detection is done

(Reference: Qinghua Liu and Yao Xie, “Distributed Change Detection
Based on Average Consensus”, arXiv preprint arXiv:1710.10378, 2017.)
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Problem Formulation and Algorithms

Discussions

I Performance analysis: sub-exponential distribution of Lt under both
H0 and H1 ⇒ ARL0 ∼ exp(b),ARL1 ≈ b

E[Lt |H1]

I Advantages of algorithm: as efficient as pure CUSUM (detection
without estimation); can handle time-varying post-change distribution
parameters

I Role of GSP: a priori knowledge of µ0,µ1 can improve performance
in ARL

I Reflection: obtain a qualified CUSUM score Lt based on (but beyond)
log-likelihood ratio

I Maximization and correction: for unknown post-change parameter θ1,

Lt = maxθ1 log f1(x
t |θ1)

f0(xt)
− C such that E[Lt |H0] < 0 and E[Lt |H1] > 0
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Experiments

Synthetic data: random graph with N = 100, edge probability p = 0.3,
µ0 = 0, ‖µ1‖ = 1, σ = 0.2
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Experiments

Real-world data: Manhattan taxi pickup in 2014 and 2015, N = 13679
I Estimate µ0 and {σ2i } from data of 2014
I Simulate small, additive anomalies in data of 2015 after Tc = 150

1. Add a constant 5 to the 112 green vertices
2. Add an increament ∼ Uniform{1, 2, . . . , 9} to green vertices, i.i.d.

among time steps and vertices
3. Add an increament ∼ Uniform{1, 2, 3, 4} to 112 randomly chosen

vertices, i.i.d. among time steps and vertices

(a) Manhattan road map.
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(b) Statistic y t .
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Summary

Contributions

I Obtain a qualified CUSUM score Lt via maximization and correction
of log-likelihood ratio: efficient and practical; can handle time-varying
post-change distribution parameter

I Centralized and distributed algorithms

I Utilize graph structure to improve performance

Thank you for your attention!
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