Haici Yang¹, Shivani Firodiya¹, Nicholas J. Bryan², Minje Kim¹

- ¹ Indiana University, Luddy School of Informatics, Computing, and Engineering, Bloomington, IN, USA
- ² Adobe Research, San Francisco, CA, USA
- hy17@iu.edu

Paper ID 3310

Introduction

What is Remixing:

- Manipulate level and/or effects of individual instrument tracks.
- Usually needs individual tracks, which are not always available.
- Traditional methods Separate, then Remix
- Traditional methods are problematic

Our method - Do not Separate, Learn to Remix

- First end-to-end neural method to jointly learn MSS + remixing.
- Higher-quality results for a wider range of volume changes.
- Focus
 - Volume change range from -12 to 12 dB.
 - Can deal with up to five sources.

Models and Methods

- Conv-TasNet-like architecture [Luo et.al 2019]
- Conv-TasNet provides a special setup that a latent space for masking-based separation is explicitly learned.
- We replace the SISDR with regular SDR as the objective function to train the models, to make them scale sensitive for remixing task.
- We propose two models based on the Conv-TasNet architecture:
 - Model I jointly optimizes a separation and remix.

$$\mathcal{L}_{Model-I} = \psi \mathcal{E}(m{y}||\hat{m{y}}) + \lambda \sum_{k=1}^K \mathcal{E}(m{s}_k|| ilde{m{s}}_k)$$
 Remixing loss

Model II is similar but mult. remixing weights direct in latent space.

$$\mathcal{L}_{Model-II} = \psi \mathcal{E}(\boldsymbol{y}||\hat{\boldsymbol{y}}) + \lambda \sum_{k=1}^{K} \mathcal{E}(\gamma_k \boldsymbol{s}_k||\tilde{\boldsymbol{s}}_k)$$
 Remixing loss $k=1$ Separation loss

Experimental Design

Datasets

- MUSDB18 and Slakh with cross dataset evaluation.
- Baseline
- ConvTasNet-based separation + remix.

Evaluation Criterion

- minSDR: the minimum of SDR and SDSDR. [Le Roux et.al 2018]
- Loudness difference: the difference between target loudness scale and the output ones for each instrumental source.

Ablation

- Different loss weight ratios: $(\psi:\lambda)=(1:1)$, (4:1), (1:0)
- When $\lambda = 0$, model is solely trained towards the remix objective.

Results

Overall remixing quality

- Model-I&II outperform baseline, especially on different cases.
- The remix-only loss is preferred in most K = 2 and K = 3 cases.
- When the task gets harder, more separation control is preferred.

minSDR / LD		Baseline	Model-I			Model-II		
Train + Test	K	$(\psi:\lambda)=(0:1)$	$(\psi:\lambda)=(1:1)$	$(\psi:\lambda)=(K:1)$	$(\underline{\psi}:\lambda)=(1:0)$	$(\psi:\lambda)=(1:1)$	$(\psi:\lambda)=(K:1)$	$(\psi:\lambda) = (1:0)$
Slakh + Slakh	2	28.24 / 0.18	24.59 / 0.31	27.63 / 0.21	28.84 / 0.19	27.35 / 0.19	28.34 / 0.21	27.16 / 0.19
	3	18.72 / 0.67	19.88 / 0.8	19.7 / 0.87	21.26 / 0.67	20.09 / 0.69	19.81 / 0.77	19.26 / 0.81
	4	0.22 / 8.42	16.48 / 1.54	15.24 / 1.85	15.57 / 1.72	16.8 / 1.57	15.16 / 1.79	17.23 / 1.51
	5	-4.08 / 11.31	7.92 / 3.87	12.2 / 3.2	11.71 / 3.34	8.24 / 3.86	12.44 / 3.15	11.5 / 3.45
MUSDB18 + Slakh	2	23.83 / 0.35	23.19 / 0.47	23.01 / 0.45	24.96 / 0.39	23.99 / 0.44	23.97 / 0.41	25.15 / 0.35
	3	11.88 / 1.64	14.13 / 1.72	13.37 / 1.94	15.3 / 1.6	15.2 / 1.56	14.76 / 1.49	15.15 / 1.68
	4	-6.06 / 7.85	9.74 / 2.78	9.94 / 2.8	9.19 / 3.05	9.63 / 2.88	10.2 / 2.78	9.73 / 3.01
MUSDB18 + MUSDB18	2	17.33 / 0.92	17.55 / 0.98	17.28 / 0.88	18.08 / 0.95	17.7 / 0.96	17.87 / 0.84	18.13 / 0.97
	3	11.82 / 1.94	13.37 / 1.93	12.52 / 2.29	14.49 / 1.72	14.17 / 1.71	14.13 / 1.64	14.15 / 1.94
	4	-9.16 / 10.1	10.16 / 2.93	11.01 / 2.85	9.84 / 3.26	10.49 / 2.97	10.95 / 3.0	10.01 / 3.27
Slakh + MUSDB18	2	12.26 / 1.61	14.54 / 1.31	14.54 / 1.39	14.71 / 1.36	14.25 / 1.42	15.1 / 1.29	13.43 / 1.56
	3	8.27 / 2.59	9.37 / 2.85	10.16 / 2.73	10.21 / 2.75	9.69 / 2.72	10.18 / 2.62	10.57 / 2.48
	4	-6.33 / 9.88	7.46 / 3.77	8.44 / 3.66	8.34 / 3.65	7.75 / 3.68	8.29 / 3.68	8.06 / 3.76

Remixing performance vs remixing weights

Model I&II
outperform the
baseline in all the
-20
remixing weight
choices.

- Model I&II have distinctively better performance when the volume adjust amount is near 0 dB – more predictable.
- Separation performance vs remixing results

(a) Δ SDR

- The performance gap mostly comes from the SAR scores
- Our neural remixer improve the remix quality by improving SAR and SIR.

(c) Δ SIR

 By involving the remixing weights into the feed-forward process, Model-II can potentially associate separation behavior with the remix weights

GROUP IN ENGINEERING