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o What is Remixing:

Paper 1D

o Conv-TasNet-like architecture [ Luo et.al 2019
« Conv-TasNet provides a special setup that a latent space for

o Overall remixing quality
* Model-l&ll outperform baseline, especially on different cases.

User Interface Neural Remixer masking-based separation is explicitly learned. * The remix-only loss is preferred in most K = 2 and K = 3 cases.
. Gan Control Implicit Separation, * We replace the SISDR with regular SDR as the objective function * When the task gets harder, more separation control is preferred.
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« Manipulate level and/or effects of individual instrument tracks.
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o ] Encoder F - Decoder D |~ _ . (a) minSDR changes with vocal volume (b) LD changes with vocal volume
o Traditional methods — Separate, then Remix hs Y= kask I
‘Decoder D | ! * Model I&ll have distinctively better performance when the volume
o Traditional methods are problematic Rermixing Weights adjust amount is near 0 dB — more predictable.
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« mMiNnSDR: the minimum of SDR and SDSDR. /L.e Roux et.al 2078]

* Loudness difference: the difference between target loudness scale
and the output ones for each instrumental source.

Ablation

 Different loss weight ratios: (y: 1) = (1:1), (4:1), (1: 0)

« When A = 0, model is solely trained towards the remix objective.

* First end-to-end neural method to jointly learn MSS + remixing.
* Higher-quality results for a wider range of volume changes.
* Focus
* Volume change range from -12 to 12 dB. ‘
» (Can deal with up to five sources.

(c) ASIR

* By involving the remixing weights into the feed-forward process,
Model-lIl can potentially associate separation behavior with the
remix weights

Source codes and demo:
https://saige.sice.indiana.edu/research-projects/neural-remixer
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