ADA-VAD: UNPAIRED ADVERSARIAL DOMAIN ADAPTATION FOR NOISE-ROBUST VOICE ACTIVITY DETECTION

Taesoo Kim*‡, Jiho Chang† and Jong Hwan Ko*

ji5u1031@g.skku.edu*‡ jiho.chang@kriss.re.kr † jhko@skku.edu *

Department of Electrical and Computer Engineering, Sungkyunkwan University, Republic of Korea*

KT Corporation, Republic of Korea ‡

Korea Research Institute of Standards and Science, Republic of Korea†

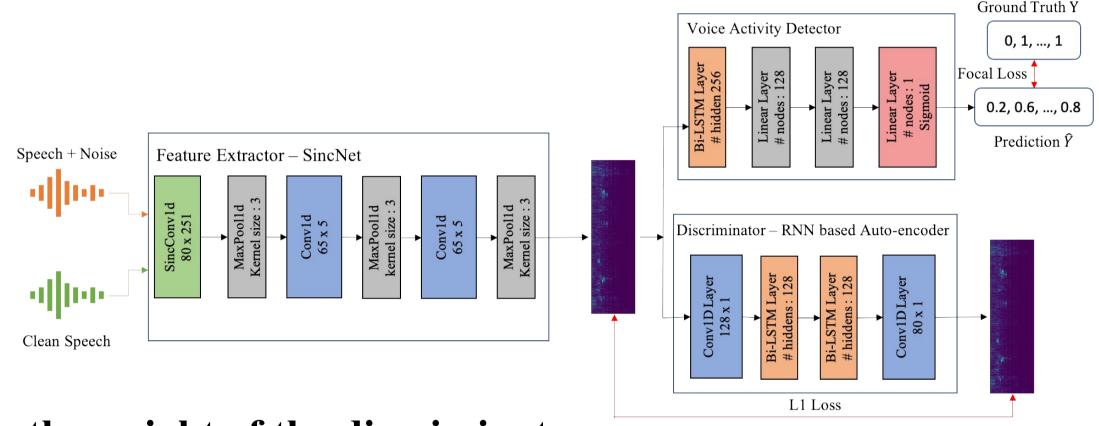
Summary

- Proposing adversarial domain adaptive VAD (ADA-VAD), which is a deep neural network (DNN) based VAD method highly robust to audio samples with various noise types and low SNRs
- Trains DNN models for a VAD task in a supervised manner.
- Simultaneously, the adversarial domain adaptation method adopted to match the domain discrepancy between noisy and clean audio stream in an unsupervised manner.
- ADA-VAD achieves an average of 3.6%p and 7%p higher AUC than models trained with manually extracted features on the AVA-speech dataset and a speech database synthesized with an unseen noise database

Method

Model components

- Feature Extractor: Extracting acoustic features with learnable filters
- VAD classifier: Predicting VAD labels for each frames
- Discriminator: Classifying whether its input noisy or clean speech signal



Updating the weight of the discriminator

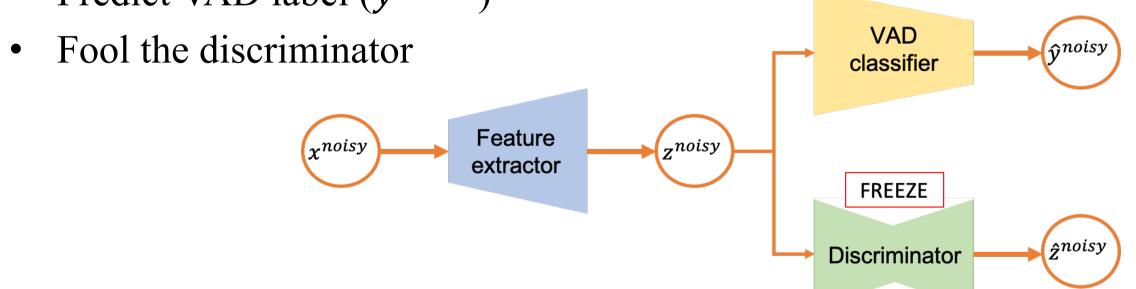
- Minimize auto-encoding loss from feature from clean speech signal z^{clean}
- Maximize auto-encoding loss from feature from corrupted speech signal z^{noisy}
- Mean squared error loss (MSE) used as the objective loss function
 Adopting Boundary-Equilibrium GAN approach (BEGAN) [3]

$$\begin{aligned} \min_{D} V_{BG}(D) &= E_{Z_{T}^{clean}} v_{Z^{clean}} \left[l_{D}(z_{T}^{clean}) \right] - k_{t} * E_{Z_{T}^{noisy}} v_{Z^{noisy}} \left[l_{D}(z_{T}^{noisy}) \right] \\ k_{t+1} &= k_{t} + \lambda_{k} \left(\gamma E_{Z_{T}^{clean}} v_{Z^{clean}} \left[l_{D}(z_{T}^{clean}) \right] \right) - E_{Z_{T}^{noisy}} v_{Z^{noisy}} \left[l_{D}(z_{T}^{noisy}) \right], \\ where k &\in [0,1], k_{0} = 0 \end{aligned}$$

$$\underbrace{ \begin{cases} v_{Clean} \\ v_{Z^{clean}} \\ v_{Z^{clean}} \end{cases}}_{Feature} \underbrace{ \begin{cases} v_{Z^{clean}} \\ v_{Z^{clean}} \\ v_{Z^{clean}} \end{cases}}_{Feature} \underbrace{ \begin{cases} v_{Z^{clean}} \\ v_{Z^{clean}} \\ v_{Z^{clean}} \end{cases}}_{Discriminator} \underbrace{ \begin{cases} v_{Z^{noisy}} \\ v_$$

Updating the weights of the feature extractor and the VAD classifier

- Extract latent feature (z^{noisy}) by feed-forwarding noisy speech (x^{noisy}) through the feature extractor
- Predict VAD label (\hat{y}^{noisy})



 $L_{total} = L_{VAD} + \tau L_{BEGAN}$

Experimental Setups

Dataset preparation

- TIMIT corpus [4] as the speech database for training and test dataset
- Train dataset
 - 1. Train D1: TIMIT corrupted with Sound effect library as noise dataset
 - 2. Train_D2: TIMIT corrupted with randomly selected noise data of the Sound effect library into 18 classes
 - Both train datasets are synthesized in randomly selected SNR level from -12 to 10
- Test dataset
 - 1. Test_D1: NOISEX-92 database [5] as noise dataset for test dataset Synthesize in 4 different SNR levels: -10, -5, 0, 5
 - 2. Test_D2 : AVA-speech dataset [6]
 - Human annotated VAD label

Baseline methods

- VAD methods based on deep neural networks
 - DNN[7], bDNN[8] and LSTM [9]
 - Trained with manually extracted acoustic features such as the mel-spectrogram
 - Trained on the Train D1 dataset
- End-to-end domain-adversarial voice activity detection (DA-VAD) [1]
 - Trained on the Train D2 dataset

Results

- Impact of the adversarial domain adaptation
 - Achieving 1.8 %p higher AUC compared to the LSTM-FL (Same model architecture without adversarial domain adaptation method)
- Comparison to a DNN-based model that learned Mel-spectrograms
 - Achieving 9.06 % higher AUC compared to bDNN
 - Achieving 13.77 % higher AUC than LSTM in extremely low SNR level such as
 -10
- The lower the SNR levels, the higher AUCs score gap between ADA-VAD and other VAD methods

SNRs	DNN	bDNN	LSTM	LSTM-F	ADA-VAD
-10	67.46	70.44	73.12	83.64	86.89
-5	67.46	80.46	81.44	91.85	94.36
0	85.4	88.6	87.73	95.46	97.01
5	91.73	93.62	91.44	97.04	98.01
10	95.69	96.32	93.11	97.8	98.48
AVG	83.4	85.89	85.37	93.16	94.95

Train_D1 as the training set. AUC(%) on the Test_D1

Model	DNN	bDNN	LSTM	LSTM-F	ADA-VAD
AUC(%)	67.46	70.44	73.12	83.64	86.89

Train_D1 as the training set. AUC(%) on the Test_D2

- Comparison to the DA-VAD method [1]
 - Achieving 1.1 % higher AUC compared to DA-VAD
 - Achieving 7.52 % higher AUC on Test_D2 (AVA-Speech dataset)

Test Set	SNRs	DA-VAD	ADA-VAD
	-10	85.02	87.42
	-5	93.53	94.95
Togt D1	0	96.8	97.74
Test_D1	5	98.17	98.73
	10	98.8	99.6
	AVG	94.47	95.6
Test_D2	-	71.58	79.1

Train_D2 as the training set. AUC(%) of DA-VAD and ADA-VAD for each SNR levels on the Test_D1 and the Test_D2

Conclusion

- Proposing a VAD model trained with the adversarial domain adaptation technique
- Matching distribution discrepancy between clean speech signal and speech signal corrupted by background noises
- Able to extract acoustic feature that is more suitable for VAD task
- Audio recordings with multiple background noise types available as training dataset

References

- [1] End-to-end domain-adversarial voice activity detection, Lavechin et al, 2020, INTERSPEECH
- [2] Ravanelli, Mirco, and Yoshua Bengio. "Speaker recognition from raw waveform with sincnet." 2018 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2018.
- [3] Berthelot, D., Schumm, T., Metz, L. (2017). Began: Boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717.
- [4] Zue, V., Seneff, S., Glass, J. (1990). Speech database development at MIT: TIMIT and beyond. Speech communication, 9(4), 351-
- [5] Varga, A., Steeneken, H. J. (1993). Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems. Speech communication, 12(3), 247-251.
- [6] Sourish Chaudhuri et al., "Ava-speech: A densely labeled dataset of speech activity in movies," arXiv preprint arXiv:1808.00606, 2018.
- [7] Xiao-Lei Zhang, "Deep belief networks based voice activity detection," IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, no. 4, pp. 697–710, 2012.
- [8] Xiao-Lei Zhang, "Boosted deep neural networks and multi-resolution cochleagram features for voice activity detection," in Fifteenth annual conference of the international speech communication association, 2014.
- [9] Florian Eyben, "Real-life voice activity detection with 1stm recurrent neural networks and an application to hollywood movies", ICASSP 2013