IEEE ICASSP 2022

Model-Based Reconstruction for Collimated Beam Ultrasound Systems

Abdulrahman (Abdu) Alanazi, Purdue University, ECE
Singanallur Venkatakrishnan, Oak Ridge National Lab
Hector Santos-Villalobos, Oak Ridge National Lab
Gregery T. Buzzard, Purdue University, Math
Charles A. Bouman, Purdue University, ECE

Challenges in NDT?

-Some of the major challenges:

- Detecting flaws in multilayered objects that can be accessed from only one side.
- Non-linear effects such reverberations.
- Direct arrival signals.

Collimated-beam systems use carefully crafted acoustic beams with side lobes suppressed and transducer diffraction minimized to provide deep penetration and high spatial resolution

MAP or Regularized Inversion

- Forward model: $f(x)=-\log p(y \mid x)$
- Prior model: $\mathrm{h}(x)=-\log p(x)$
- MAP or regularized inversion:

$$
\hat{x} \leftarrow \arg \min _{x}\{f(x)+h(x)\}
$$

System Model

- Assuming a linear system, we seek to reconstruct an image x using a mathematical model of the form

$$
y=A x+D g+w
$$

- y is the observed data,
- A is the system matrix,
- D a matrix whose columns form a basis for the possible direct arrival signals,
- g is a scaling coefficient vector for D,
- w is a Gaussian random vector with distribution $N\left(0, \sigma^{2} I\right)$.

Transfer Functions

- For the homogeneous medium shown in Fig. 1, the transfer function from point r_{i} to r_{j} is

$$
G(v, f)=\tau \exp \left\{-(\alpha c|f|+j 2 \pi f)\left(\frac{\left\|v-r_{i}\right\|+\left\|r_{j}-v\right\|}{c}\right)\right\},
$$

where

- τ is the transmittance coefficient of the front surface of the medium,
- $\quad \alpha$ is the attenuation coefficient in s / m, and
- $\quad c$ is the sound speed in m / s in the medium.

Fig. 1 homogeneous medium

- So, the multi-layer media shown in Fig. 2, the transfer function from r_{i} to r_{j}

$$
G(v, f)=\prod_{l=1}^{L} \tau_{l} e^{\left(\gamma_{l}(v)|f|+2 j \pi f T_{l}(v)\right)}
$$

where

- L is the total number of layers,
- τ_{l} is the transmittance coefficient of the front surface of the $l^{\text {th }}$ layer,
- $\gamma_{l}(v)=c_{l} \alpha_{l} T_{l}(v)$,
- c_{l} is the acoustic speed in m / s in the $l^{\text {th }}$ layer,
- $\quad \alpha_{l}$ is the attenuation coefficient in s / m in the $l^{\text {th }}$ layer,

Fig. 2 Multi-layer media

- and $T_{l}(v)$ is the travel time in seconds between the front and back interface of the $l^{t^{\text {th }}}$ layer.

Time Delay Computation in Multi-layers

- Based on Snell's law, the time delay from r_{i} to v to r_{j} is given by

$$
T(v)=\sum_{l=1}^{L} \frac{\sqrt{z_{i, l}^{2}+\eta_{i, l}^{2}}+\sqrt{z_{j, l}^{2}+\eta_{j, l}^{2}}}{c_{l}}
$$

where $z_{i, l}=\eta_{i, l} \tan \left(\theta_{i, l}\right)$ and $z_{j, l}=\eta_{j, l} \tan \left(\theta_{j, l}\right), l=1,2, \ldots, L$.

- The height of v as a function of $\theta_{i, l}$ is

$$
\sum_{l=1}^{L} z_{i, l}=\eta_{i, 1} \tan \left(\theta_{i, 1}\right)+\cdots+\eta_{i, L} \tan \left(\theta_{i, L}\right)
$$

- From Snell's law, we know that

$$
\theta_{i, k}=\sin ^{-1}\left(\sin \left(\theta_{i, k-1}\right) \frac{c_{k}}{c_{k-1}}\right), \forall k \in\{2,3, \ldots, L\}
$$

- The effective time delay is then computed using Binary Search by finding the angle of refraction and solving for the minimum distance.

Received signal \& system matrix

- In frequency space, the received signal is proportional to

$$
Y(v, f)=-x(v) S(f) \prod_{l=1}^{L} \tau_{l} e^{-\left(\gamma_{l}(v)|f|+2 j \pi f T_{l}(v)\right)}
$$

where $x(v)$ in m^{-3} is the reflection coefficient for the voxel v and $S(f)$ the Fourier transform of the transmitted signal.

- Then the time-domain received signal for a reflection from location v is given by

$$
y(v, t)=x(v) h(\gamma(v), t-T(v))
$$

where

$$
h(\gamma(v), t)=\mathcal{F}^{-1}\left\{-S(f) e^{-\gamma(v)|f|}\right\}
$$

and \mathcal{F}^{-1} is the inverse Fourier transform.

- In order to reduce computation, we make the approximation that

$$
\tilde{h}(\gamma, t)=h(\gamma, t) \operatorname{rect}\left(\frac{t}{t_{0}}-\frac{1}{2}\right)
$$

where t_{0} is a constant based on the assumption that $h(\gamma, t)$ is equal to zero for $t>t_{0}$.

- The signal received at time t by transducer r_{j} in response to the transmission from r_{i} is computed by summing over all voxels v to obtain

$$
\tilde{y}_{i, j}(t)=\sum_{v} \tilde{h}(\gamma(v), t-T(v)) x(v)
$$

- This linear relationship between $x(v)$ and $y(t)$ determines a single row of the system matrix A in the time domain.

Collimated Beams

- Define a function $\phi_{s, r}(v)$ that has a value ranging from 0 to 1 . Then, we modify $\tilde{y}_{i, j}(t)$ to

$$
\tilde{y}_{i, j}(t)=\sum_{v} \tilde{h}(\gamma(v), t-T(v)) \phi(v)^{(\beta)} x(v)
$$

- The function $\phi_{s, r}(v)$ depends on the incident and reflected angles and given by

$$
\phi(v)^{(\beta)}=\cos ^{\beta}\left(\sum_{p=1}^{L} \theta_{i, p}\right) \cos ^{\beta}\left(\sum_{q=1}^{L} \theta_{j, q}\right)
$$

(a)

(b)

(c)
(a) A simulated beam profile, $\phi(v)^{(\beta)}$, with (a) $\beta=1$ and (b) $\beta=8$.
(c) A real beam profile for a well-collimated source.

Forward Model

- Finally, the discretized version of the forward model will be

$$
-\log p(y \mid x, g)=\frac{1}{2 \sigma^{2}}\|y-A x-D g\|^{2}+\text { constant }
$$

where

- $y \in \mathbb{R}^{M K \times 1}$ is the measurement,
- σ^{2} is the variance of the measurement,
- $A \in \mathbb{R}^{M K \times N}$ is the system matrix,
- $x \in \mathbb{R}^{N \times 1}$ is the image,
- $D \in \mathbb{R}^{M K \times K}$ is the direct arrival signal matrix,
- $g \in \mathbb{R}^{K \times 1}$ is a vector that scales the columns of D independently,
- M is the number of measurement samples, and
- $\quad N$ is the number of pixels.

Prior Model

- We adopt the q-generalized Gaussian Markov Random Field (qGGMRF) for the prior model. With this design, the prior model is

$$
p(x)=\frac{1}{z} \exp \left(-\sum_{\{s, r\} \in C} b_{s, r} \rho\left(x_{s}-x_{r}\right)\right)
$$

where z is a normalizing constant, C is the set of pair-wise cliques, and

$$
p(\Delta)=\frac{|\Delta|^{p}}{p \sigma_{g_{s, r}}^{p}}\left(\frac{\left|\frac{\Delta}{T \sigma_{g_{s, r}}}\right|^{q-p}}{1+\left|\frac{\Delta}{T \sigma_{g_{s, r}}}\right|^{q-p}}\right),
$$

where $\sigma_{g_{s, r}}=\sigma_{0} \sqrt{m_{s} m_{r}}$ and $m_{s}=1+(m-1) *\left(\frac{\text { depth of pixel } s}{\text { maximum depth }}\right)^{a}$
Hence,

$$
-\log p(x)=\sum_{\{s, r\} \in C} b_{s, r} \rho\left(x_{s}-x_{r}\right)+\text { constant }
$$

Optimization of MAP cost function

- After combining the forward and prior models, the MAP estimate is given by

$$
(x, g)_{M A P}=\arg \min _{x \geq 0, g}\left\{\frac{1}{2 \sigma^{2}}\|y-A x-D g\|^{2}+\sum_{\{s, r\} \in C} b_{s, r} \rho\left(x_{s}-x_{r}\right)\right\}
$$

$$
\begin{aligned}
& \text { ICD Algorithm Using Majorization Technique } \\
& \text { Initialize } x, e \leftarrow y-A x \\
& \text { For k iterations }\{ \\
& \quad g=\left(D^{t} D\right)^{-1} D^{t} e \\
& e \leftarrow e-D g \\
& \text { For each pixel } s \in S\{ \\
& \tilde{b}_{s, r} \leftarrow \frac{b_{s, r} \rho\left(x_{s}-x_{r}\right)}{2\left(x_{s}-x_{r}\right)} \\
& \theta_{1} \leftarrow-e^{t} \mathrm{~A}_{*, S}+\sum_{r \in \partial s} \tilde{b}_{s, r}\left(x_{s}-x_{r}\right) \\
& \theta_{2} \leftarrow \mathrm{~A}_{*, S}^{t} \mathrm{~A}_{*, S}+\sum_{r \in \partial s} \tilde{b}_{s, r} \\
& \alpha^{*} \leftarrow \operatorname{clip}\left\{-\frac{\theta_{1}}{\theta_{2}},\left[-x_{S}, \infty\right)\right\} \\
& \quad x_{s} \leftarrow x_{S}+\alpha^{*} \\
& e \leftarrow e-A_{*, S} \alpha^{*} \\
& \}
\end{aligned}
$$

Experimental Results: System geometry

Experimental Results: Synthetic Data Results

- Synthetic data was generated using the K -Wave simulator.
- The red and green dashed lines demonstrate the groove and backwall locations, respectively.

Experimental Results: Real Data Results

Conclusion

- We proposed our multi-layer UMBIR algorithm designed for ultrasonic collimated beam systems.
- We showed the derivation of our modified forward model for multilayered structures and collimated ultrasonic-transducers.
- Our results demonstrated that our UMBIR shows clear improvements over SAFT and is effective for real data applications.

Thank You!

References

-[1] Asadollahi, A., \& Khazanovich, L. (2019). Analytical reverse time migration with new imaging conditions for one-sided nondestructive evaluation of concrete elements using shear waves. Ultrasonics, 99, 105960.
-[2] https://www.nde-ed.org
-[3] https://www.engineersedge.com/calculators/air-density.htm
-[4] http://www.k-wave.org/forum/topic/air-water-reflection
-[5] https://www.nde-
ed.org/EducationResources/CommunityCollege/Ultrasonics/Physics/refractionsnells.htm
-[6] http://www.brl.uiuc.edu/Publications/1987/Anderhub-JDMS-281-1987.pdf
-[7] http://www.k-wave.org/documentation/example tvsp transducer field patterns.php
-[8] http://www.k-wave.org/forum/topic/p final-and-p max all\#post-7041
-[9] Davis, E. S. (2018). Development of a Novel 3D Acoustic Borehole Integrity Monitoring System (No. LA-UR-18-21823). Los Alamos National Lab.(LANL), Los Alamos, NM (United States).

Reconstructions of all views

Notch

Recons of the 37 positions. The notch can be seen between position 16 and 25 .

