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Challenges in NDT?

=Some of the major challenges:

* Detecting flaws in multilayered objects that can be accessed from only one
side.

 Non-linear effects such reverberations.
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MAP or Regularized Inversion

Prior model Sensor model P
p(x) X p(ylx) y\

unknown measurements

= Forward model: f(x) = —logp(y|x)
= Prior model: h(x) = —logp(x)

= MAP or regularized inversion:
X « argmin{f(x) + h(x)}
X



System Model

= Assuming a linear system, we seek to reconstruct an image x using a mathematical
model of the form
y=Ax+Dg+w

e yisthe observed data,
e A is the system matrix,
e D amatrix whose columns form a basis for the possible direct arrival signals,

e g is ascaling coefficient vector for D,

e w is a Gaussian random vector with distribution N (0, a1).



Transfer Functions

=  For the homogeneous medium shown in Fig. 1, the transfer function
from point 7; to 7 is

6w, ) = rexp{—(aclf] +jorp) (Y

where
e 1 is the transmittance coefficient of the front surface of the medium,
e « is the attenuation coefficient in s/m, and
e c is the sound speed in m/s in the medium.

" So, the multi-layer media shown in Fig. 2, the transfer function from |3
i to 7;
L

G(v, f) = 1_[ 7,6 NWIf 42/ Ty(v)
=1
where
e L is the total number of layers,
e 1, is the transmittance coefficient of the front surface of the [*" layer,

o () =cqaT(v),

o ¢ is the acoustic speed in m/s in the [*" layer,

e a, is the attenuation coefficient in s/m in the [*" layer,

« and T;(v) is the travel time in seconds between the front and back
interface of the ['" layer.

Fig.2 Multi-layer media



Time Delay Computation in Multi-layers

= Based on Snell’s law, the time delay from r; to v to 7; is given by

T(v)

2 2 2 2

EL: ,/Zi,z +nit+ ./Zj,l + 15,
- c
=1 L

where z;; = n;; tan(6;;) and z;; = n;; tan(6;,),l = 1,2, ..., L.

= The height of v as a function of 8;; is
L

z zyp =n;ptan(6;1) + -+ tan(6; )
=1

= From Snell’s law, we know that
c
0, = sin™1 (sin(@i,k_l)c—k),‘v’k €{2,3,..,L}.
k—1

= The effective time delay is then computed using Binary Search by finding the angle of
refraction and solving for the minimum distance.




Received signal & system matrix

= In frequency space, the received signal is proportional to
L
Y, f) = —x()S(f) 1_[Tle—m(v)|f|+21nfn(v))
=1

where x(v) in m~3 is the reflection coefficient for the voxel v and S(f) the Fourier transform of the
transmitted signal.

= Then the time-domain received signal for a reflection from location v is given by
y(,t) = x(Wh{y),t —=T()),

where
h(y(w),t) = F-H=S(f)e Y@II1}

and F~1 is the inverse Fourier transform.

*  In order to reduce computation, we make the approximation that

h(y,t) = h(y,t) rect (é - %)

where t is a constant based on the assumption that h(y, t) is equal to zero for ¢ > ¢,.

= The signal received at time ¢ by transducer 7; in response to the transmission from 7; is computed by
summing over all voxels v to obtain

51y = ) Ry®),t = T@)x()

v

= This linear relationship between x(v) and y(t) determines a single row of the system matrix A
in the time domain.



Collimated Beams

=  Define a function ¢ ,.(v) that has a value ranging from 0 to 1. Then, we modify ¥; ;(t) to

7:5(©) = ) h(y®),t = T@))$ () x(v)

v

= The function ¢ ,-(v) depends on the incident and reflected angles and given by
L L

()P = cos E 6;p |cos E ;4
p=1 q=1
400 T 2
350 350
0.8
300 300
'gzso 0.6 ’gzso
%200 %200 < 200
8150 0.48150 040)
100 ¢
50 . 50
0
SO 100 -10
Width (mm) Wldth (mm) Wldth (mm)

(2) (b) ©

(a) A simulated beam profile, ¢ (v)#), with (a) 8 =1 and (b) 8 = 8.
(c) A real beam profile for a well-collimated source.



Forward Model

* Finally, the discretized version of the forward model will be

~logp(ylx,9) = 553 lly = Ax = Dgl|* + constant,

where
o y € RMKX1jg the measurement,
o 0?2 is the variance of the measurement,
o A€ RMKXN i the system matrix,
o x € RV*! s the image,
o D € RMK*K i5 the direct arrival signal matrix,
o g € RK*1is a vector that scales the columns of D independently,
e M is the number of measurement samples, and

e N is the number of pixels.



Prior Model

= We adopt the g-generalized Gaussian Markov Random Field (qGGMRF) for the

prior model. With this design, the prior model is
1
p(x) = Eexp <_ Z bs,rp(xs - xr))
{s,r}ec

where z 1s a normalizing constant, C 1s the set of pair-wise cliques, and

A q-p
AP Togsr
p(4) = hoP -r |
Isr \ 1+ A
To
ds,r

depth of pixel s )a

where g, = gp\/msm, and ms =1+ (m —1) (maximum depth

Hence,

—logp(x) = X5 rec bsrp(xs — x-) + constant .



Optimization of MAP cost function

= After combining the forward and prior models, the MAP estimate is given by

1
— : - _ _ 2
(x, g)map = arg min {202 ly — Ax — Dgl|* +

bs,rp(xs - xr)}
{s,r}ec

ICD Algorithm Using Majorization Technique
Initialize x, e « y — Ax
For k iterations {
g = (D'D)"1Dte
e<—e—Dg
For each pixel s € S {
1’5 bs,rp’(xs_xr)
ST 2(xs—xr) 5
01 < _etA*,s + Xreas bsr (s — x)
0, « AE,SA*,S + Yreas Es,r

a* « clip {—Z—;, [—xs, oo)}

Xg — X+ a”
e—e—Aa




System geometry

Experimental Results
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Experimental Results: Synthetic Data Results

Synthetic data was
generated using the
K-Wave simulator.

The red and green dashed
lines demonstrate the
groove and backwall
locations, respectively.
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Experimental Results: Real Data Results
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Conclusion

= We proposed our multi-layer UMBIR algorithm designed for
ultrasonic collimated beam systems.

= We showed the derivation of our modified forward model for
multilayered structures and collimated ultrasonic-transducers.

"  QOur results demonstrated that our UMBIR shows clear
improvements over SAFT and is effective for real data
applications.



Thank You!
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Reconstructions of all views
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Recons of the 37 positions. The notch can be seen between position 16 and 25.



