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Background
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Conventional Deep Learning
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• Trained on fixed dataset

• Lacking flexibility of 

adapting to new data



Class Incremental Learning, CIL

• Retain the acquired knowledge while learning new concepts

• 2 stages: Base Model Training, Incremental Learning
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Catastrophic Forgetting in CIL

• Overfitting to new data

• Imbalance between the old and new class data
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[Pfülb, 2018.]



Existing Solutions

• Existing approaches mainly focus on the incremental learning

stage
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Observation

• Different initial seed results in different weights

• Which set of weight is better for CIL?
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Hypothesis

It is possible to alleviate catastrophic forgetting by 

training a more transferable base model
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Approach
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Multitask Learning - Intuition

• CIL requires model to retain previous knowledge

• Idea: Simulate incremental learning 
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Multitask Learning

• Decompose the base task

• Trained with a shared backbone

• Find weights which can solve all tasks at once
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Selection of Tasks

• Many valid sub-tasks 

• Difficulty ↔ Diversity

• Explored along 2 directions
1. Number of classes

2. Subset of classes
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Fine-tuning Strategy

• High learning rate → large changes in weights

• 2-step fine-tuning strategy during incremental learning:
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Evaluation
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Datasets

• UrbanSound8K
• 10 environment sound events

• Split into 4 (base), 2, 2, 2 classes

• Google Speech Commands (GSC)
• 20 core keyword classes

• Split into 5 (base), 3, 3, 3, 3, 3 classes
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Baseline

• Previous state-of-the-art results by Mittal et al. (2021)

• Cross Entropy (CE) + Knowledge Distillation (KD)

• Balanced exemplar set

• We only changed base model training

16[Mittal, 2021.]



Task Selection

More diverse → Higher generalizability
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(a) Subset of classes (b) Number of classes 



Number of Exemplar
Comparison to SOTA

More exemplars → Higher Performance

Multitask > Non-multitask base training 18



Effect of Losses

Improvement comes from use of exemplar

Knowledge distillation has limited effect
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Conclusion

1. Hypothesis: more transferable feature representation 

might be beneficial to CIL

2. Introduced multitask learning to the base model training

3. Improves average incremental accuracy by up to 5.5%

4. Opens the door to improving the quality of base model

in incremental learning
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