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INTRODUCTION N\ VARIATIONAL BAYESIAN TRANSLATION NETWORK
Make a g I-purpose statistic for Target: to different i itional image
lmuge generation. . Conduct an inference step on latent variables. - Variational Inference
From a statistical viewpoint, these problems can be described well by a latent . Construct a deep network to realize efficient image generation. - Deep
variable model (LVM). Lea":l{\g g

. Specifically, semantic features can be viewed as latent variables while the
generation can be conducted by inferring the conditional distribution of images
given the variables corresponding to desired semantics.

. The idea of disentangling codes for different semantics is partially discussed by
1, 2], while first ic modeling.

In this paper, we present a novel probabilistic framework for a general class of
conditional image generative problems. Our contributions can be summarized as
follows,

(P

. Propose a deep generative network for image
translation tasks, with latent variables of
semantics inferred via variational inference.

. Driven by probabilistic modeling, the method

has clear interpretation and improved omatically inference
generality to multiple variants. med semantics ‘step for latent
. Experimental results on illustrate that the e
proposed method achieves better performance d
on unsupervised image-to-image translation,
and enables variants beyond SoTA works.
BAYESIAN FOR IMAGE
The generative process of an image sample x € X in certain y .

domain involves two latent variables: a domain-related variable
y and an independent domain-unrelated variable z, referred
toas style’ and “content’ variable, following the classical 3=
nomenclature in NST [3].

The generation from the latent space to the image space can be
obtained via the likelihood distribution p(x]y, z).
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EXPERIMENTAL RESULTS
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