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Motivation: Make a general-purpose statistic framework for conditional 
image generation.
• From a statistical viewpoint, these problems can be described well by a latent 

variable model (LVM). 
• Specifically, semantic features can be viewed as latent variables while the 

generation can be conducted by inferring the conditional distribution of images 
given the variables corresponding to desired semantics. 

• The idea of disentangling codes for different semantics is partially discussed by 
[1, 2], while seldom derived from first principles via statistic modeling.

In this paper, we present a novel probabilistic framework for a general class of 

conditional image generative problems. Our contributions can be summarized as 

follows,

• Propose a deep generative network for image 

translation tasks, with latent variables of 

semantics inferred via variational inference.

• Driven by probabilistic modeling, the method 

has clear interpretation and improved 

generality to multiple variants.

• Experimental results on illustrate that the 

proposed method achieves better performance 

on unsupervised image-to-image translation, 

and enables variants beyond SoTA works.

The generative process of an image sample 𝑥 ∈ 𝑋 in certain 
domain involves two latent variables: a domain-related variable 
𝑦 and an independent domain-unrelated variable 𝑧, referred
to as ’style’ and ’content’ variable, following the classical 
nomenclature in NST [3].
The generation from the latent space to the image space can be 
obtained via the likelihood distribution p(x|y, z). 

Target: to disentangle different semantics for conditional image generation.
• Conduct an inference step on latent variables. → Variational Inference
• Construct a deep network to realize efficient image generation. → Deep 

Learning
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Fig. 1 Supervised Image-to-Image Translation with Multimodal
Fig. 2 Unsupervised Image-to-Image Translation with Content and Style Editing
Fig.3 Multiple styles synthesis.    Fig.4 Mixed Continuous transformation in content
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